摘要:
Long chain alkyl aromatic compounds are prepared by alkylating an alkylatable aromatic compound with a long chain alkylating agent in the presence of catalyst comprising a synthetic porous crystalline material characterized by an X-ray diffraction pattern including interplanar d-spacings at 12.36.+-.0.4, 11.03.+-.0.2, 8.83.+-.0.14, 6.18.+-.0.12, 6.00.+-.0.10, 4.06.+-.0.07, 3.91.+-.0.07 and 3.42.+-.0.06 Angstroms.
摘要:
A coke-deactivated noble metal-containing catalyst is sulfided with a sulfiding agent, e.g., H.sub.2 S in H.sub.2, then coke is burned from the sulfided catalyst by contacting the catalyst with oxygen, optionally in the presence of sulfur dioxide, and then the catalyst is reduced with a reducing agent, e.g., H.sub.2. The process permits burning off coke while avoiding excessive agglomeration of the noble metals on the catalyst.
摘要:
A method is disclosed for the pretreatment of olefinic hydrocarbon feedstock to remove conjugated dienes and/or basic nitrogen compounds that deactivate acidic catalyst particles used in olefin conversion processes by reacting the dienes with one or more dienophiles to form the corresponding Diels-Alder adduct, followed by catalytic conversion of the olefinic hydrocarbon feedstock containing the adduct. The formation of the Diels-Alder adduct essentially eliminates the role of dienes in the feedstock as catalyst deactivating agents. When maleic anhydride (MA) is employed as the dienophile, basic nitrogen reacts with maleic anhydride, or with the tetrahydrophthalic anhydride adduct, to lower the amount of catalyst deactivating basic nitrogen compounds in the feedstock. Where the olefin conversion process comprises etherification of isoolefins with alkanol in a C.sub.4 + or C.sub.5 + olefinic hydrocarbon feedstream to produce a gasoline boiling range product enriched in oxygen and rich in high octane value alkyl tertiary alkyl ethers, it has been discovered that the adduct, particularly those adducts formed with MA, is in the gasoline boiling range and contributes usefully to the oxygen enrichment of the gasoline and to octane value.
摘要:
A selective alkene upgrading process wherein a mixture of intermediate molecular weight monoalkenes comprising at least one linear alkene component and at least one tertiary alkene component is contacted under selective olefin interconversion conditions with medium pore, shape selective acid catalyst, such as MCM-22 aluminosilicate zeolite, thereby converting at a major amount of linear intermediate alkene to lower alkene while leaving tertiary alkene substantially unconverted. In the preferred embodiments, the process interconversion conditions comprise reaction temperature in the range of about 300.degree. C. to 550.degree. C., pressure in the range of 100 kpa to 1000 kPa, thereby selectively converting at least 60% (net) of linear intermediate alkene while converting less than 20% (net) of branched alkene. By etherifying at least a portion of the unconverted tertiary alkene, an oxygenated fuel having enhanced octane rating is obtained. Cracked lower olefins may be recovered for upgrading.
摘要:
Long chain alkyl aromatic compounds are prepared by alkylating an alkylatable aromatic compound with a long chain alkylating agent in the presence of catalyst comprising a synthetic porous MCM-36 material.
摘要:
Short chain alkyl aromatic compounds are prepared by alkylating an alkylatable aromatic compound with a short chain alkylating agent in the presence of catalyst comprising a synthetic porous MCM-36 material.
摘要:
A process for upgrading olefinic feedstocks containing lower olefins employing new synthetic catalyst of ultra-large pore crystalline material. The new crystalline material exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than about 15 grams benzene/100 grams at 50 torr and 25.degree. C., a hexagonal electron diffraction pattern that can be indexed with a d.sub.100 value greater than about 18 Angstrom Units and a hexagonal arrangement of uniformly sized pores with a maximum perpendicular cross section of at least about 13 Angstrom units. A multistage process is provided for catalytic oligomerization of lower olefin which comprises contacting olefinic feedstock under catalytic conversion conditions with acid metallosilicate solid catalyst having the structure of MCM-41 with hexagonal honeycomb lattice structure consisting essentially of uniform pores in the range of about 20 to 100 Angstroms. The oligomerization reaction is very selective, especially when conducted at temperature of about 40.degree. to 250.degree. C., yielding branched intermediate olefins. Low severity reaction permits excellent conversio of lower olefins at pressure of about 100-13,000 pKa range and moderate space velocity. Intermediate oligomers produced over MCM-41, when reacted under cracking/disproportionation conditions yield etherifiable C.sub.4 + isoalkenese in good yield.
摘要:
There is provided a method and catalyst for removing catalyst-poisoning impurities or contaminants such as arsenic, iron and nickel from hydrocarbonaceous fluids, particularly shale oil and fractions thereof. More particularly there is provided a method of removal of such impurities by contacting the fluids with a copper-Group VIA metal-alumina catalyst. For example, a copper-molybdenum-alumina catalyst may be used as a guard bed material in a step preceding most refining operations, such as desulfurization, denitrogenation, catalytic hydrogenation, etc.
摘要:
A process is disclosed for the production of alkyl tertiary alkyl ethers in C.sub.4 + hydrocarbon streams rich in isoolefins, typically containing catalyst deactivating amounts of dienes and/or compounds containing heteroatoms. The process is especially advantageous in extending the cycle length for the zeolite catalyzed etherification of isoolefins in C.sub.4 + FCC gasoline by reducing catalyst aging. It has been discovered that if hydrogen is cofed with the alkanol and C.sub.4 + isoolefin rich feedstreams to an etherification reaction catalyzed by acidic zeolite wherein the zeolite has been impregnated with a noble metal the rate of catalyst aging or deactivation is substantially lowered. The process is especially effective, i.e., catalyst aging is particularly reduced, when hydrogen is cofed to an etherification reaction using acidic zeolite Beta catalyst containing palladium.