摘要:
The present invention has the object of providing a charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices.To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges. Yet another method is disclosed for correcting the measurement length value or magnification based on fluctuations found by measuring the amount of electrostatic charge at the specified points under at least two charged particle optical conditions, and then using a charged particle beam to measure fluctuations in measurement dimensions occurring due to fluctuations in the electrostatic charge at the specified locations.
摘要:
To automatically measure patterns arranged symmetrically with respect to the axis of rotation on a sample by following predetermined procedures, a charged-particle-beam device of the present invention automatically rotates a template image to be used for template matching by an angle (θ1) calculated from the coordinates on the sample. Accordingly, when patterns arranged regularly and symmetrically with respect to the axis of rotation are automatically measured, the same template can be repeatedly used as in a case where devices arranged iteratively in a lattice-like fashion are observed or measured. Thus, the workload required to create a recipe can be reduced.
摘要:
A method and a device are disclosed for suppressing error in electrostatic charge amount or defocus on the basis of electrostatic charge storage due to electron beam scanning when measuring the electrostatic charge amount of the sample or a focus adjustment amount by scanning the electron beam. An electrostatic charge measurement method, a focus adjustment method, or a scanning electron microscope for measuring an electrostatic charge amount or controlling an application voltage to the sample changes the application voltage to the energy filter while moving the scanning location of the electron beam on the sample.
摘要:
The present invention suppresses decreases in the volumes of the patterns which have been formed on the surfaces of semiconductor samples or of the like, or performs accurate length measurements, irrespective of such decreases. In an electrically charged particle ray apparatus by which the line widths and other length data of the patterns formed on samples are to be measured by scanning the surface of each sample with electrically charged particle rays and detecting the secondary electrons released from the sample, the scanning line interval of said electrically charged particle rays is set so as not to exceed the irradiation density dictated by the physical characteristics of the sample. Or measured length data is calculated from prestored approximation functions.
摘要:
The present invention has the object of providing charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices. To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges. Yet another method is disclosed for correcting the measurement length value or magnification based on fluctuations found by measuring the amount of electrostatic charge at the specified points under at least two charged particle optical conditions, and then using a charged particle beam to measure fluctuations in measurement dimensions occurring due to fluctuations in the electrostatic charge at the specified locations.
摘要:
The present invention aims to provide a method and a device of capable of suppressing error in electrostatic charge amount or defocus on the basis of electrostatic charge storage due to electron beam scanning when measuring the electrostatic charge amount of the sample or a focus adjustment amount by scanning the electron beam.In order to achieve the above object, according to one aspect of the present invention, an electrostatic charge measurement method, a focus adjustment method, or a scanning electron microscope for measuring an electrostatic charge amount or controlling an application voltage to the sample by changing the application voltage to the energy filter while moving the scanning location of the electron beam on the sample is proposed.
摘要:
The present invention has the object of providing a charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices.To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges. Yet another method is disclosed for correcting the measurement length value or magnification based on fluctuations found by measuring the amount of electrostatic charge at the specified points under at least two charged particle optical conditions, and then using a charged particle beam to measure fluctuations in measurement dimensions occurring due to fluctuations in the electrostatic charge at the specified locations.
摘要:
A thin film transistor used as a switching element of an active matrix type liquid crystal display is an enhancement-mode thin film transistor including a silicon nitride film formed over a scanning electrode, an insulating layer formed on the silicon nitride film, and a semiconductor layer having a source region and a drain region formed on the insulating layer. The thin film transistor has a threshold voltage higher than the maximum value of the liquid crystal operating voltage. The insulating layer is a silicon oxide film having a thickness of 30 Å or more.
摘要:
A liquid crystal display device has a plurality of gate electric wirings provided on one of a pair of substrates, a plurality of drain electric wirings which respectively intersect with the plurality of gate electric wirings in a matrix state, a plurality of thin film transistors formed on respective intersecting points of the drain electric wirings and the gate electric wirings, a plurality of common electric wirings extending in the same direction as the gate electric wirings, a plurality of picture elements, at least one of the picture elements being respectively surrounded by the gate electric wirings and the drain electric wirings, a plurality of counter electrodes connected to the common electric wirings and extending in the same direction as the drain electric wirings, and a plurality of the picture element electrodes connected to the thin film transistors and extending in the same direction as the counter electrode corresponding to respective picture elements, in which the respective counter electrodes contact the liquid crystal layer directly. Furthermore, an electric field having a parallel component with respect to one of the pair of substrates is produced in said liquid crystal layer by an electrical voltage applied between the counter electrodes and the picture element electrodes.