Nonaqueous electrolyte secondary battery anode material with a uniform metal-semiconductor alloy layer
    21.
    发明授权
    Nonaqueous electrolyte secondary battery anode material with a uniform metal-semiconductor alloy layer 有权
    非水电解质二次电池负极材料具有均匀的金属 - 半导体合金层

    公开(公告)号:US08133613B2

    公开(公告)日:2012-03-13

    申请号:US12105090

    申请日:2008-04-17

    摘要: The present invention relates to nonaqueous electrolyte secondary batteries and durable anode materials and anodes for use in nonaqueous electrolyte secondary batteries. The present invention also relates to methods for producing these anode materials. In the present invention, a metal-semiconductor alloy layer is formed on an anode material by contacting a portion of the anode material with a displacement solution. The displacement solution contains ions of the metal to be deposited and a dissolution component for dissolving a part of the semiconductor in the anode material. When the anode material is contacted with the displacement solution, the dissolution component dissolves a part of the semiconductor in the anode material thereby providing electrons to reduce the metal ions and deposit the metal on the anode material. After deposition, the anode material and metal are annealed to form a uniform metal-semiconductor alloy layer.

    摘要翻译: 本发明涉及非水电解质二次电池和用于非水电解质二次电池的耐用阳极材料和阳极。 本发明还涉及这些阳极材料的制造方法。 在本发明中,通过将阳极材料的一部分与位移溶液接触,在阳极材料上形成金属 - 半导体合金层。 位移溶液包含待沉积的金属的离子和用于将半导体的一部分溶解在阳极材料中的溶解组分。 当阳极材料与位移溶液接触时,溶解组分溶解阳极材料中的半导体的一部分,从而提供电子以减少金属离子并将金属沉积在阳极材料上。 沉积后,阳极材料和金属被退火以形成均匀的金属 - 半导体合金层。

    ANODE MATERIAL HAVING A UNIFORM METAL-SEMICONDUCTOR ALLOY LAYER
    22.
    发明申请
    ANODE MATERIAL HAVING A UNIFORM METAL-SEMICONDUCTOR ALLOY LAYER 有权
    具有均匀金属 - 半导体合金层的阳极材料

    公开(公告)号:US20090263716A1

    公开(公告)日:2009-10-22

    申请号:US12426069

    申请日:2009-04-17

    IPC分类号: H01M4/02 H01L21/24 H01L21/306

    摘要: The present invention relates to methods for producing anode materials for use in nonaqueous electrolyte secondary batteries. In the present invention, a metal-semiconductor alloy layer is formed on an anode material by contacting a portion of the anode material with a solution containing metals ions and a dissolution component. When the anode material is contacted with the solution, the dissolution component dissolves a part of the semiconductor material in the anode material and deposit the metal on the anode material. After deposition, the anode material and metal are annealed to form a uniform metal-semiconductor alloy layer. The anode material of the present invention can be in a monolithic form or a particle form. When the anode material is in a particle form, the particulate anode material can be further shaped and sintered to agglomerate the particulate anode material.

    摘要翻译: 本发明涉及非水电解质二次电池用阳极材料的制造方法。 在本发明中,通过使阳极材料的一部分与含有金属离子和溶解成分的溶液接触,在阳极材料上形成金属 - 半导体合金层。 当阳极材料与溶液接触时,溶解组分溶解阳极材料中半导体材料的一部分并将金属沉积在阳极材料上。 沉积后,阳极材料和金属被退火以形成均匀的金属 - 半导体合金层。 本发明的阳极材料可以是整体形式或颗粒形式。 当阳极材料为颗粒形式时,颗粒阳极材料可进一步成形并烧结以使颗粒状阳极材料聚结。

    Method for fabricating a magnetic head having an improved magnetic shield
    23.
    发明授权
    Method for fabricating a magnetic head having an improved magnetic shield 失效
    一种制造具有改进的磁屏蔽的磁头的方法

    公开(公告)号:US07340824B2

    公开(公告)日:2008-03-11

    申请号:US10883141

    申请日:2004-06-30

    IPC分类号: G11B5/127 H04R31/00

    摘要: A first magnetic shield layer of the read head sensor is deposited upon a slider substrate surface. A patterned photoresist is then photolithographically fabricated upon the first magnetic shield layer with openings that are formed alongside the location at which the read sensor will be fabricated. An ion milling step is performed to create pockets within the surface of the magnetic shield layer at the location of the openings in the photoresist layer. The photoresist layer is then removed, and a fill layer is deposited across the surface of the magnetic shield layer in a depth greater than the depth of the pocket. Thereafter, a polishing step is conducted to remove portions of the fill layer down to the surface of the magnetic shield layer. A G1 insulation layer is deposited and a magnetic head sensor element is then fabricated upon the insulation layer.

    摘要翻译: 读头传感器的第一磁屏蔽层沉积在滑块基板表面上。 然后将图案化的光致抗蚀剂光刻地制造在具有开口的第一磁屏蔽层上,该开口沿着读取传感器将被制造的位置形成。 执行离子铣削步骤以在光致抗蚀剂层中的开口的位置处在磁屏蔽层的表面内产生凹坑。 然后去除光致抗蚀剂层,并且以大于凹穴深度的深度横跨磁屏蔽层的表面沉积填充层。 此后,进行抛光步骤以将填充层的部分向下移动到磁屏蔽层的表面。 沉积G 1绝缘层,然后在绝缘层上制造磁头传感器元件。

    Apparatus for patterning a self-aligned coil using a damascene process
    24.
    发明授权
    Apparatus for patterning a self-aligned coil using a damascene process 有权
    用于使用镶嵌工艺图案化自对准线圈的装置

    公开(公告)号:US07075750B2

    公开(公告)日:2006-07-11

    申请号:US10652877

    申请日:2003-08-29

    IPC分类号: G11B5/147

    CPC分类号: G11B5/127

    摘要: An apparatus for patterning a self-aligned coil using a damascene process is disclosed. Coil pockets are formed in a first insulation layer disposed over a first pole layer. A barrier/seed layer is deposited along walls of the coil pockets in the insulation layer. Copper is formed in the coil pockets and over the insulation layer. The copper is planarized down to the insulation layer. The self-aligned coil process packs more copper into the same coil pocket and relaxes the coil alignment tolerance. Protrusions are prevented because of the more efficient and uniform spacing of the coil to reduce heat buildup in the head during a write.

    摘要翻译: 公开了一种使用镶嵌工艺图案化自对准线圈的装置。 在设置在第一极层上的第一绝缘层中形成线圈腔。 隔离层/籽晶层沿绝缘层中的线圈袋的壁被沉积。 在线圈袋中形成铜,并在绝缘层上形成铜。 铜平坦化到绝缘层。 自对准线圈工艺将更多的铜包装到相同的线圈袋中,并松弛线圈对准公差。 由于在写入期间线圈的间隔更加有效和均匀以减少头部的积聚,所以防止了突起。

    Method for electroplating a body-centered cubic nickel-iron alloy thin film with a high saturation flux density
    25.
    发明授权
    Method for electroplating a body-centered cubic nickel-iron alloy thin film with a high saturation flux density 失效
    用于电镀具有高饱和磁通密度的体心立方镍铁合金薄膜的方法

    公开(公告)号:US07001499B2

    公开(公告)日:2006-02-21

    申请号:US10053785

    申请日:2002-01-18

    IPC分类号: C25D5/50

    摘要: A process for electroplating and annealing thin-films of nickel-iron alloys having from 63% to 81% iron content by weight to produce pole pieces having saturation flux density (BS) in the range from 1.9 to 2.3 T (19 to 23 kG) with acceptable magnetic anisotropy and magnetostriction and a coercivity (HC) no higher than 160 A/m (2 Oe). The desired alloy layer properties, including small crystal size and minimal impurity inclusions, can be produced by including higher relative levels of Fe++ ions in the electroplating bath while holding the bath at a lower temperature while plating from a suitable seed layer. The resulting alloy layer adopts a small crystal size (BCC) without significant inclusion of impurities, which advantageously permits annealing to an acceptable HC while retaining the high BS desired.

    摘要翻译: 电镀和退火铁含量为63%至81%的镍铁合金薄膜的方法,以产生具有饱和磁通密度(B S S S S)的范围在1.9至 2.3 T(19〜23kG)具有可接受的磁各向异性和磁致伸缩,矫顽力(H C C)不高于160A / m(2Oe)。 包括小晶体尺寸和最小杂质夹杂物在内的期望的合金层性能可以通过在电镀浴中包含更高的相对水平的Fe ++离子而制备,同时将浴保持在较低温度,同时从 合适的种子层。 所得到的合金层采用小晶粒尺寸(BCC),而不显着地包含杂质,这有利地允许退火到可接受的H C,同时保持所需的高B S S S。

    Nonaqueous electrolyte secondary battery anode material with a uniform metal-semiconductor alloy layer
    26.
    发明授权
    Nonaqueous electrolyte secondary battery anode material with a uniform metal-semiconductor alloy layer 有权
    非水电解质二次电池负极材料具有均匀的金属 - 半导体合金层

    公开(公告)号:US08524395B2

    公开(公告)日:2013-09-03

    申请号:US13396958

    申请日:2012-02-15

    摘要: The present invention relates to nonaqueous electrolyte secondary batteries and durable anode materials and anodes for use in nonaqueous electrolyte secondary batteries. The present invention also relates to methods for producing these anode materials. In the present invention, a metal-semiconductor alloy layer is formed on an anode material by contacting a portion of the anode material with a displacement solution. The displacement solution contains ions of the metal to be deposited and a dissolution component for dissolving a part of the semiconductor in the anode material. When the anode material is contacted with the displacement solution, the dissolution component dissolves a part of the semiconductor in the anode material thereby providing electrons to reduce the metal ions and deposit the metal on the anode material. After deposition, the anode material and metal are annealed to form a uniform metal-semiconductor alloy layer.

    摘要翻译: 本发明涉及非水电解质二次电池和用于非水电解质二次电池的耐用阳极材料和阳极。 本发明还涉及这些阳极材料的制造方法。 在本发明中,通过将阳极材料的一部分与位移溶液接触,在阳极材料上形成金属 - 半导体合金层。 位移溶液包含待沉积的金属的离子和用于将半导体的一部分溶解在阳极材料中的溶解组分。 当阳极材料与位移溶液接触时,溶解组分溶解阳极材料中的半导体的一部分,从而提供电子以减少金属离子并将金属沉积在阳极材料上。 沉积后,阳极材料和金属被退火以形成均匀的金属 - 半导体合金层。

    NEGATIVE ELECTRODE STRUCTURE FOR NON-AQUEOUS LITHIUM SECONDARY BATTERY
    27.
    发明申请
    NEGATIVE ELECTRODE STRUCTURE FOR NON-AQUEOUS LITHIUM SECONDARY BATTERY 有权
    非水性锂二次电池负极结构

    公开(公告)号:US20120115026A1

    公开(公告)日:2012-05-10

    申请号:US12426118

    申请日:2009-04-17

    IPC分类号: H01M4/02 B05D5/12 C25D7/00

    摘要: The present invention relates to a negative electrode structure for use in a non-aqueous electrolyte secondary battery and a method of making such negative electrode structure. The negative electrode structure comprises: a monolithic anode comprising a semiconductor material, and a uniform ion transport structure disposed at the monolithic anode surface for contacting a non-aqueous electrolyte, wherein the uniform ion transport structure serves as a current collector and the negative electrode structure does not contain another current collector. The present invention also relates to a battery comprising the negative electrode structure of the present invention, a cathode, and a non-aqueous electrolyte.

    摘要翻译: 本发明涉及一种用于非水电解质二次电池的负极结构体及其制造方法。 负极结构包括:包含半导体材料的单片阳极和设置在整体式阳极表面处的用于接触非水电解质的均匀离子传输结构,其中均匀的离子传输结构用作集电器,负极结构 不包含另一个集电器。 本发明还涉及包含本发明的负极结构,阴极和非水电解质的电池。

    THREE-DIMENSIONAL BATTERIES AND METHODS OF MANUFACTURING THE SAME
    28.
    发明申请
    THREE-DIMENSIONAL BATTERIES AND METHODS OF MANUFACTURING THE SAME 有权
    三维电池及其制造方法

    公开(公告)号:US20110111283A1

    公开(公告)日:2011-05-12

    申请号:US12013388

    申请日:2008-01-11

    IPC分类号: H01M4/04 H01M2/02 C25D13/12

    摘要: Various methods and apparatus relating to three-dimensional battery structures and methods of manufacturing them are disclosed and claimed. In certain embodiments, a three-dimensional battery comprises a battery enclosure, and a first structural layer within the battery enclosure, where the first structural layer has a first surface, and a first plurality of conductive protrusions extend from the first surface. A first plurality of electrodes is located within the battery enclosure, where the first plurality of electrodes includes a plurality of cathodes and a plurality of anodes, and wherein the first plurality of electrodes includes a second plurality of electrodes selected from the first plurality of electrodes, each of the second plurality of electrodes being in contact with the outer surface of one of said first plurality of conductive protrusions. Some embodiments relate to processes of manufacturing energy storage devices with or without the use of a backbone structure or layer.

    摘要翻译: 公开并要求保护与三维电池结构及其制造方法有关的各种方法和装置。 在某些实施例中,三维电池包括电池外壳和电池外壳内的第一结构层,其中第一结构层具有第一表面,并且第一多个导电突起从第一表面延伸。 第一多个电极位于电池外壳内,其中第一多个电极包括多个阴极和多个阳极,并且其中第一多个电极包括从第一多个电极中选择的第二多个电极, 所述第二多个电极中的每一个与所述第一多个导电突起中的一个的外表面接触。 一些实施例涉及在使用或不使用骨架结构或层的情况下制造能量存储装置的过程。

    NONAQUEOUS ELECTROLYTE SECONDARY BATTERY ANODE MATERIAL WITH A UNIFORM METAL-SEMICONDUCTOR ALLOY LAYER
    29.
    发明申请
    NONAQUEOUS ELECTROLYTE SECONDARY BATTERY ANODE MATERIAL WITH A UNIFORM METAL-SEMICONDUCTOR ALLOY LAYER 有权
    具有均匀金属 - 半导体合金层的非水电解质二次电池阳极材料

    公开(公告)号:US20090263717A1

    公开(公告)日:2009-10-22

    申请号:US12105090

    申请日:2008-04-17

    摘要: The present invention relates to nonaqueous electrolyte secondary batteries and durable anode materials and anodes for use in nonaqueous electrolyte secondary batteries. The present invention also relates to methods for producing these anode materials. In the present invention, a metal-semiconductor alloy layer is formed on an anode material by contacting a portion of the anode material with a displacement solution. The displacement solution contains ions of the metal to be deposited and a dissolution component for dissolving a part of the semiconductor in the anode material. When the anode material is contacted with the displacement solution, the dissolution component dissolves a part of the semiconductor in the anode material thereby providing electrons to reduce the metal ions and deposit the metal on the anode material. After deposition, the anode material and metal are annealed to form a uniform metal-semiconductor alloy layer.

    摘要翻译: 本发明涉及非水电解质二次电池和用于非水电解质二次电池的耐用阳极材料和阳极。 本发明还涉及这些阳极材料的制造方法。 在本发明中,通过将阳极材料的一部分与位移溶液接触,在阳极材料上形成金属 - 半导体合金层。 位移溶液包含待沉积的金属的离子和用于将半导体的一部分溶解在阳极材料中的溶解组分。 当阳极材料与位移溶液接触时,溶解组分溶解阳极材料中的半导体的一部分,从而提供电子以减少金属离子并将金属沉积在阳极材料上。 沉积后,阳极材料和金属被退火以形成均匀的金属 - 半导体合金层。

    SECONDARY BATTERY WITH AUXILIARY ELECTRODE
    30.
    发明申请
    SECONDARY BATTERY WITH AUXILIARY ELECTRODE 有权
    辅助电极二次电池

    公开(公告)号:US20090208834A1

    公开(公告)日:2009-08-20

    申请号:US12119369

    申请日:2008-05-12

    摘要: The present invention includes three-dimensional secondary battery cells comprising an electrolyte, a cathode, an anode, and an auxiliary electrode. The cathode, the anode, and the auxiliary electrode have a surface in contact with the electrolyte. The anode and the cathode are electrolytically coupled. The auxiliary electrode is electrolytically coupled and electrically coupled to at least one of the anode or the cathode. Electrically coupled means directly or indirectly connected in series by wires, traces or other connecting elements. The average distance between the surface of the auxiliary electrode and the surface of the coupled cathode or the coupled anode is between about 1 micron and about 10,000 microns. The average distance means the average of the shortest path for ion transfer from every point on the coupled cathode or anode to the auxiliary electrode.

    摘要翻译: 本发明包括包含电解质,阴极,阳极和辅助电极的三维二次电池。 阴极,阳极和辅助电极具有与电解质接触的表面。 阳极和阴极电解耦合。 辅助电极被电解耦合并电耦合到阳极或阴极中的至少一个。 电耦合装置通过电线,迹线或其他连接元件串联连接或间接连接。 辅助电极的表面与耦合阴极或耦合阳极的表面之间的平均距离在约1微米至约10,000微米之间。 平均距离是指从耦合的阴极或阳极到辅助电极的每个点的离子转移的最短路径的平均值。