摘要:
An integrated circuit (IC) interconnect structure that includes a first via positioned in a dielectric and coupled to a high current device at one end, and a buffer metal segment positioned in a dielectric and coupled to the first via at an opposite end thereof. The buffer metal segment includes a plurality of electrically insulating inter-dielectric (ILD) pads forming an ILD cheesing pattern thereon, to direct current. The IC interconnect structure further includes a second via positioned in a dielectric formed over the buffer metal segment and coupled to the buffer metal segment at one end and a metal power line formed in a dielectric and coupled to the second via at an opposite end thereof. The use of the ILD pads on the buffer metal segment enables a more even distribution of current along the metal power line.
摘要:
An interconnect structure for an integrated circuit (IC) device includes a metal line formed within a dielectric layer, the metal line having one or more vertical diffusion barriers therein; wherein the one or more vertical diffusion barriers correspond to a liner material of a via formed above the metal line, with the via extending completely through a thickness of the metal line such that a bottom most portion of the via comprises a portion of the metal line
摘要:
A method of recovering gain in a bipolar transistor includes: providing a bipolar transistor including an emitter, a collector, and a base disposed between junctions at the emitter and the collector; reverse biasing the junction disposed between the emitter and the base with an operational voltage and for an operational time period, so that a current gain β of the transistor is degraded; idling the transistor, and generating a repair current Ibr into the base, while forward biasing the junction disposed between the emitter and the base with a first repair voltage (VEBR), and while at least partly simultaneously reverse biasing the junction disposed between the collector and the base with a second repair voltage (VCBR), for a repair time period (TR), so that the gain is at least party recovered; wherein VEBR, VCBR and TR have the proportional relationship: TR ∝ (Δβ)2×exp [1/(Tam+Rth×le×VCER)], VCER=VBER+VCBR, and le=β×Ibr, β is the normal current gain of the transistor, Δβ is the target recovery gain of the transistor in percentage, Tam is the ambient temperature in degrees K, Ibr is the repair current to the base in μamps, Rth is the self-heating thermal resistance of the transistor in K/W, TR is in seconds. The invention further includes structures for implementing the method.
摘要:
One or more multilayer back side metallurgy (BSM) stack structures are formed on thru-silicon-vias (TSV). The multiple layers of metal may include an adhesion layer of chromium on the semiconductor wafer back side, a conductive layer of copper, diffusion barrier layer of nickel and a layer of nobel metal, such as, gold. To prevent edge attack of copper after dicing, the layer of nickel is formed to seal the copper edge. To also prevent edge attack of the layer of nickel after dicing, the layer of gold is formed to seal both the layer of copper and the layer of nickel.
摘要:
A test structure for a through-silicon-via (TSV) in a semiconductor chip includes a first contact, the first contact being electrically connected to a first TSV; and a second contact, wherein the first contact, second contact, and the first TSV form a first channel, and a depth of the first TSV is determined based on a resistance of the first channel. A method of determining a depth of a through-silicon-via (TSV) in a semiconductor chip includes etching a first TSV into the semiconductor chip; forming a first channel, the first channel comprising the first TSV, a first contact electrically connected to the first TSV, and a second contact; connecting a current source to the second contact; determining a resistance across the first channel; and determining a depth of the first TSV based on the resistance of the first channel.
摘要:
A system, method and device for measuring a depth of a Through-Silicon-Via (TSV) in a semiconductor device region on a wafer during in-line semiconductor fabrication, includes a resistance measurement trench structure having length and width dimensions in a substrate, ohmic contacts on a surface of the substrate disposed on opposite sides of the resistance measurement trench structure, and an unfilled TSV structure in semiconductor device region having an unknown depth. A testing circuit makes contact with the ohmic contacts and measures a resistance therebetween, and a processor connected to the testing circuit calculates a depth of the trench structure and the unfilled TSV structure based on the resistance measurement. The resistance measurement trench structure and the unfilled TSV are created simultaneously during fabrication.
摘要:
A design structure including an integrated circuit for reducing the electromigration effect. The IC includes a substrate and a power transistor which has first and second source/drain regions. The IC further includes first, second, and third electrically conductive line segments being (i) directly above the first source/drain region and (ii) electrically coupled to the first source/drain region through first contact regions and second contact regions, respectively. The first and second electrically conductive line segments (i) reside in a first interconnect layer of the integrated circuit and (ii) run in the reference direction. The IC further includes an electrically conductive line being (i) directly above the first source/drain region, (ii) electrically coupled to the first and second electrically conductive line segments through a first via and a second via, respectively, (iii) resides in a second interconnect layer of the integrated circuit, and (iv) runs in the reference direction.
摘要:
Structure and method for providing a programmable anti-fuse in a FET structure. A method of forming the programmable anti-fuse includes: providing a p− substrate with an n+ gate stack; implanting an n+ source region and an n+ drain region in the p− substrate; forming a resist mask over the n+ drain region, while leaving the n+ source region exposed; etching the n+ source region to form a recess in the n+ source region; and growing a p+ epitaxial silicon germanium layer in the recess in the n+ source region to form a pn junction that acts as a programmable diode or anti-fuse.
摘要:
a central reference clock is placed in a substantially middle chip of a 3-D chip-stack. The central reference clock is distributed to each child chip of the 3-D chip-stack, so that a plurality of clocks is generated for each individual chip in the 3-D-stack in a synchronous manner. A predetermined number of through-silicon-vias and on-chip wires are employed to form a delay element for each slave clock, ensuring that the clock generated for each child chip is substantially synchronized. Optionally, an on-chip clock trimming circuit is embedded for further precision tuning to eliminate local clock skews.
摘要:
Programmable fuse-type through silicon vias (TSVs) in silicon chips are provided with non-programmable TSVs in the same chip. The programmable fuse-type TSVs may employ a region within the TSV structure having sidewall spacers that restrict the cross-sectional conductive path of the TSV adjacent a chip surface contact pad. Application of sufficient current by programming circuitry causes electromigration of metal to create a void in the contact pad and, thus, an open circuit. Programming may be carried out by complementary circuitry on two adjacent chips in a multi-story chip stack.