Abstract:
A method for fabricating a conductive via structure is provided, which includes the steps of: forming in an encapsulant a plurality of openings penetrating therethrough; forming a dielectric layer on the encapsulant and in the openings of the encapsulant; forming a plurality of vias in the dielectric layer in the openings of the encapsulant; and forming a conductive material in the vias to thereby form conductive vias. Therefore, by filling the openings having rough wall surfaces with the dielectric layer so as to form the vias having even wall surfaces, the present invention improves the quality of the conductive vias.
Abstract:
A semiconductor package is provided, including: a carrier; at least an interposer disposed on the carrier; an encapsulant formed on the carrier for encapsulating the interposer while exposing a top side of the interposer; a semiconductor element disposed on the top side of the interposer; and an adhesive formed between the interposer and the semiconductor element. By encapsulating the interposer with the encapsulant, warpage of the interposer is avoided and a planar surface is provided for the semiconductor element to be disposed thereon, thereby improving the reliability of electrical connection between the interposer and the semiconductor element.
Abstract:
A conductive bump structure used to be formed on a substrate having a plurality of bonding pads. The conductive bump structure includes a first metal layer formed on the bonding pads, a second metal layer formed on the first metal layer, and a third metal layer formed on the second metal layer. The second metal layer has a second melting point higher than a third melting point of the third metal layer. Therefore, a thermal compression bonding process is allowed to be performed to the third metal layer first so as to bond the substrate to another substrate, and then a reflow process can be performed to melt the second metal layer and the third metal layer into each other so as to form an alloy portion, thus avoiding cracking of the substrate.
Abstract:
A fabrication method of a semiconductor package is disclosed, which includes the steps of: providing a carrier; disposing at least a semiconductor element on the carrier; forming an encapsulant on the carrier and the semiconductor element for encapsulating the semiconductor element; removing the carrier; disposing a pressure member on the encapsulant; and forming an RDL structure on the semiconductor element and the encapsulant, thereby suppressing internal stresses through the pressure member so as to mitigate warpage on edges of the encapsulant.
Abstract:
A conductive bump structure used to be formed on a substrate having a plurality of bonding pads. The conductive bump structure includes a first metal layer formed on the bonding pads, a second metal layer formed on the first metal layer, and a third metal layer formed on the second metal layer. The second metal layer has a second melting point higher than a third melting point of the third metal layer. Therefore, a thermal compression bonding process is allowed to be performed to the third metal layer first so as to bond the substrate to another substrate, and then a reflow process can be performed to melt the second metal layer and the third metal layer into each other so as to form an alloy portion, thus avoiding cracking of the substrate.