Abstract:
An integrated circuit chip includes an interconnection stack with a cavity formed therein. The cavity extends through one or more interconnection levels of the stack. A material at least partially fills the cavity. The fill material has a selectivity to polishing and/or to etching different by more than 10% from a selectivity to polishing and/or to etching of a material forming an insulator of the interconnection stack.
Abstract:
An integrated circuit includes a semiconductor substrate and a multitude of electrically conductive pads situated between component zones of the semiconductor substrate and a first metallization level of the integrated circuit, respectively. The multitude of electrically conductive pads are encapsulated in an insulating region and include: first pads, in electrical contact with corresponding first component zones, and at least one second pad, not in electrical contact with a corresponding second component zone.
Abstract:
An integrated circuit chip includes an interconnection stack with a cavity formed therein. The cavity extends through one or more interconnection levels of the stack. A material at least partially fills the cavity. The fill material has a selectivity to polishing and/or to etching different by more than 10% from a selectivity to polishing and/or to etching of a material forming an insulator of the interconnection stack.
Abstract:
An integrated circuit including a plurality of first semiconductor strips of a first conductivity type and of second semiconductor strips of a second conductivity type arranged in alternated and contiguous fashion on a region of the second conductivity type, including for each of the first strips: a plurality of bias contacts; for each bias contact, a switch capable of applying a potential on the bias contact; two detection contacts arranged at the ends of the first strip; and a detection circuit having its activation causing the turning off of the switches and the comparison with a threshold of the resistance between the detection contacts.
Abstract:
An electronic chip including: a plurality of first semiconductor bars of a first conductivity type and of second semiconductor bars of a second conductivity type arranged alternately and contiguously on a region of the first conductivity type; two detection contacts arranged at the ends of each second bar; a circuit for detecting the resistance between the detection contacts of each second bar; insulating trenches extending in the second bars down to a first depth between circuit elements; and insulating walls extending across the entire width of each second bar down to a second depth greater than the first depth.
Abstract:
An integrated circuit, including: a semiconductor substrate of a first conductivity type; a plurality of regions of the first conductivity type vertically extending from the surface of the substrate, each of the regions being laterally delimited all along its periphery by a region of the second conductivity type; and a device for detecting a variation of the substrate resistance between each region of the first conductivity type and an area for biasing the substrate to a reference voltage.
Abstract:
A system for detecting a laser attack on an integrated circuit chip formed in a semiconductor substrate, including a detection device capable of detecting voltage variations of the substrate.
Abstract:
The disclosure relates to a countermeasure method in an electronic microcircuit, comprising successive process phases executed by a circuit of the microcircuit, and adjusting a power supply voltage between power supply and ground terminals of the circuit, as a function of a random value generated for the process phase, at each process phase executed by the circuit.
Abstract:
The present description concerns a ROM including at least one first rewritable memory cell. In an embodiment, a method of manufacturing a read-only memory (ROM) comprising a plurality of memory cells is proposed. Each of the plurality of memory cells includes a rewritable first transistor and a rewritable second transistor. An insulated gate of the rewritable first transistor is connected to an insulated gate of the rewritable second transistor. The method includes successively depositing, on a semiconductor structure, a first insulating layer and a first gate layer, wherein the first insulating layer is arranged between the semiconductor structure and the first gate layer, wherein the rewritable second transistor further includes a well-formed between an associated first insulating layer and the semiconductor structure, and wherein the rewritable first insulating layer is in direct contact with the semiconductor structure; and successively depositing a second insulating layer and a second gate layer.
Abstract:
The present description concerns a ROM including at least one first rewritable memory cell. In an embodiment, a method of manufacturing a read-only memory (ROM) comprising a plurality of memory cells is proposed. Each of the plurality of memory cells includes a rewritable first transistor and a rewritable second transistor. An insulated gate of the rewritable first transistor is connected to an insulated gate of the rewritable second transistor. The method includes successively depositing, on a semiconductor structure, a first insulating layer and a first gate layer, wherein the first insulating layer is arranged between the semiconductor structure and the first gate layer, wherein the rewritable second transistor further includes a well-formed between an associated first insulating layer and the semiconductor structure, and wherein the rewritable first insulating layer is in direct contact with the semiconductor structure; and successively depositing a second insulating layer and a second gate layer.