Abstract:
A nonvolatile memory device includes a memory cell array having cell strings that each includes memory cells stacked on a substrate in a direction perpendicular to the substrate. A row decoder is connected with the memory cells through word lines. The row decoder applies a setting voltage to at least one word line of the word lines and floats the at least one word line during a floating time. A page buffer circuit is connected with the cell strings through bit lines. The page buffer senses voltage changes of the bit lines after the at least one word line is floated during the floating time and outputs a page buffer signal as a sensing result. A counter counts a number of off-cells in response to the page buffer signal. A detecting circuit outputs a detection signal associated with a defect cell based on the number of off-cells.
Abstract:
A non-volatile memory device includes: a memory cell array including a plurality of memory cells connected to a plurality of word lines and a plurality of bit lines, a row decoder configured to selectively control the plurality of word lines, a page buffer including a plurality of latches corresponding to the plurality of bit lines, respectively, and a control circuit configured to control the non-volatile memory device to enter a suspend state after terminating a verify operation of a program loop of a program operation of the plurality of memory cells in response to a suspend request being generated during an execution operation of the program loop.
Abstract:
In a method of reading data in a nonvolatile memory device including a plurality of memory cells arranged at intersections of a plurality of word-lines and a plurality of bit-lines, a read request on a first word-line of the plurality of word-lines is received, a read operation is performed on a second word-line adjacent to the first word-line and a read operation is performed on the first word-line based on data read from memory cells of the second word-line. The read operation on the first word-line is performed by adjusting a level of recover read voltage applied to the first word-line during the read operation of the first word-line based on at least one of a program state of the data read from memory cells of the second word-line and an operating parameter of the nonvolatile memory device.
Abstract:
Methods of operating nonvolatile memory devices may include identifying one or more multi-bit nonvolatile memory cells in a nonvolatile memory device that have undergone unintentional programming from an erased state to an at least partially programmed state. Errors generated during an operation to program a first plurality of multi-bit nonvolatile memory cells may be detected by performing a plurality of reading operations to generate error detection data and then decoding the error detection data to identify specific cells having errors. A programmed first plurality of multi-bit nonvolatile memory cells and a force-bit data vector, which was modified during the program operation, may be read to support error detection. This data, along with data read from a page buffer associated with the first plurality of multi-bit nonvolatile memory cells, may then be decoded to identify which of the first plurality of multi-bit nonvolatile memory cells are unintentionally programmed cells.
Abstract:
A method of reading a nonvolatile memory device comprises applying a read voltage to a memory cell array to read selected memory cells, counting a number of the selected memory cells that have a threshold voltage higher or lower than the read voltage, and comparing the counted number with a reference value to determine a number of bits stored in the selected memory cells.
Abstract:
A non-volatile memory device includes: a memory cell array including a plurality of memory cells connected to a plurality of word lines and a plurality of bit lines, a row decoder configured to selectively control the plurality of word lines, a page buffer including a plurality of latches corresponding to the plurality of bit lines, respectively, and a control circuit configured to control the non-volatile memory device to enter a suspend state after terminating a verify operation of a program loop of a program operation of the plurality of memory cells in response to a suspend request being generated during an execution operation of the program loop.
Abstract:
A non-volatile memory device includes: a memory cell array including a plurality of memory cells connected to a plurality of word lines and a plurality of bit lines, a row decoder configured to selectively control the plurality of word lines, a page buffer including a plurality of latches corresponding to the plurality of bit lines, respectively, and a control circuit configured to control the non-volatile memory device to enter a suspend state after terminating a verify operation of a program loop of a program operation of the plurality of memory cells in response to a suspend request being generated during an execution operation of the program loop.
Abstract:
A non-volatile memory device includes: a memory cell array including a plurality of memory cells connected to a plurality of word lines and a plurality of bit lines, a row decoder configured to selectively control the plurality of word lines, a page buffer including a plurality of latches corresponding to the plurality of bit lines, respectively, and a control circuit configured to control the non-volatile memory device to enter a suspend state after terminating a verify operation of a program loop of a program operation of the plurality of memory cells in response to a suspend request being generated during an execution operation of the program loop.
Abstract:
A nonvolatile memory device includes memory cells stacked in a direction perpendicular to a substrate and further includes a first memory cell string connected between a selected bit line and a selected string selection line, a second memory cell string connected between the selected bit line and an unselected string selection line, and a third memory cell string connected to an unselected bit line. During a bit line setup section of a program operation, a ground voltage is provided to the selected bit line and a power supply voltage provided to the unselected string selection line is changed to the ground voltage.