Abstract:
A non-volatile memory device includes: a memory cell array including a plurality of memory cells connected to a plurality of word lines and a plurality of bit lines, a row decoder configured to selectively control the plurality of word lines, a page buffer including a plurality of latches corresponding to the plurality of bit lines, respectively, and a control circuit configured to control the non-volatile memory device to enter a suspend state after terminating a verify operation of a program loop of a program operation of the plurality of memory cells in response to a suspend request being generated during an execution operation of the program loop.
Abstract:
Disclosed is a memory device which includes a memory cell array including memory cells, data latches connected with a sensing node and storing data in a first memory cell of the memory cells, a sensing latch connected with the sensing node, a temporary storage node, a switch connected between the sensing latch and the temporary storage node and configured to operate in response to a temporary storage node setup signal, a first precharge circuit configured to selectively precharge a first bit line corresponding to the first memory cell depending on a level of the temporary storage node, and a control logic circuit configured to control a dump operation between the data latches, the sensing latch, and the temporary storage node. The control logic circuit performs the dump operation from the data latches to the sensing latch while the first precharge circuit selectively precharges the first bit line.
Abstract:
A non-volatile memory device includes: a memory cell array including a plurality of memory cells connected to a plurality of word lines and a plurality of bit lines, a row decoder configured to selectively control the plurality of word lines, a page buffer including a plurality of latches corresponding to the plurality of bit lines, respectively, and a control circuit configured to control the non-volatile memory device to enter a suspend state after terminating a verify operation of a program loop of a program operation of the plurality of memory cells in response to a suspend request being generated during an execution operation of the program loop.
Abstract:
A non-volatile memory device includes: a memory cell array including a plurality of memory cells connected to a plurality of word lines and a plurality of bit lines, a row decoder configured to selectively control the plurality of word lines, a page buffer including a plurality of latches corresponding to the plurality of bit lines, respectively, and a control circuit configured to control the non-volatile memory device to enter a suspend state after terminating a verify operation of a program loop of a program operation of the plurality of memory cells in response to a suspend request being generated during an execution operation of the program loop.
Abstract:
Methods of operating nonvolatile memory devices may include identifying one or more multi-bit nonvolatile memory cells in a nonvolatile memory device that have undergone unintentional programming from an erased state to an at least partially programmed state. Errors generated during an operation to program a first plurality of multi-bit nonvolatile memory cells may be detected by performing a plurality of reading operations to generate error detection data and then decoding the error detection data to identify specific cells having errors. A programmed first plurality of multi-bit nonvolatile memory cells and a force-bit data vector, which was modified during the program operation, may be read to support error detection. This data, along with data read from a page buffer associated with the first plurality of multi-bit nonvolatile memory cells, may then be decoded to identify which of the first plurality of multi-bit nonvolatile memory cells are unintentionally programmed cells.
Abstract:
Disclosed is a memory device which includes a memory cell array including memory cells, data latches connected with a sensing node and storing data in a first memory cell of the memory cells, a sensing latch connected with the sensing node, a temporary storage node, a switch connected between the sensing latch and the temporary storage node and configured to operate in response to a temporary storage node setup signal, a first precharge circuit configured to selectively precharge a first bit line corresponding to the first memory cell depending on a level of the temporary storage node, and a control logic circuit configured to control a dump operation between the data latches, the sensing latch, and the temporary storage node. The control logic circuit performs the dump operation from the data latches to the sensing latch while the first precharge circuit selectively precharges the first bit line.
Abstract:
A memory system includes: a memory device including a memory cell array and a control circuit; and a temperature sensor configured to measure a temperature of the memory device to generate a temperature value, wherein the control circuit is configured to: set a compensation sensing parameter based on the temperature value, determine a sensing parameter by applying the compensation sensing parameter to a basic sensing parameter corresponding to a read mode among a plurality of read modes having different read speeds, and read data from the memory cell array based on the sensing parameter.
Abstract:
An operation method of a nonvolatile memory device for programming memory cells connected to a selected word line, the method including: performing a program operation; suspending the program operation after performing a first portion of the program operation; and resuming the program operation to perform a second portion of the program operation, wherein the program operation is resumed within a reference time after the program operation is suspended.
Abstract:
A nonvolatile memory device includes a memory cell array including a plurality of memory cells, an address decoder configured to be connected to the memory cells through a plurality of word lines and to provide select or unselect read voltages to the word lines, and a control logic configured to control the address decoder to perform a plurality of read sequences in a continuous read mode and to adjust a word line setup start point in at least one of the read sequences to be different than a word line setup start point in at least one of the other read sequences, wherein the word line setup start point is a time at which the select or unselect read voltages begin to be provided to the word lines.
Abstract:
A nonvolatile memory device with a memory cell array including a plurality of memory cells coupled to first through M-th wordlines and first through N-th bitlines (M>2, N>2), and a page buffer circuit including first through N-th page buffers that are coupled to the first through N-th bitlines, respectively, and generate first through N-th output data, respectively. A K-th page buffer includes first through L-th latches which generate read data by sampling a voltage of a K-th output line, which is discharged through a K-th bitline, at different sampling timings after a read voltage is applied to a P-th wordline (K≤N, L>1, P≤M). The K-th page buffer outputs the first output data if an error in the read data of the first latch is correctable.