Abstract:
A process for fabricating an electrostatic chuck (20) comprising the steps of (c) forming a base (80) having an upper surface with cooling grooves (85) therein, the grooves sized and distributed for holding a coolant therein for cooling the base; and (d) pressure conforming an electrical insulator layer (45) to the grooves on the base by the steps of (i) placing the base into a pressure forming apparatus (25) and applying an electrical insulator layer over the grooves in the base; and (ii) applying a sufficiently high pressure onto the insulator layer to pressure conform the insulator layer to the grooves to form a substantially continuous layer of electrical insulator conformal to the grooves on the base.
Abstract:
In a method for in situ cleaning a shield bearing of excess target material deposited in a physical vapor deposition chamber, during a cleaning cycle, a vacuum is created in the physical vapor deposition chamber. A gas mixture which includes a reactive gas is introduced into the physical vapor deposition chamber. The reactive gas is activated by plasma discharge. During the cleaning, the gas mixture is continuously removed from the vapor deposition chamber along with reaction products.
Abstract:
A process for forming with a single masking step regions of different thicknesses in a photo-sensitive layer is disclosed. A masking member or reticle includes opaque and transparent areas and areas with a grating. The pitch of the periodic grating is of a lesser dimension than can be resolved by the masking projection apparatus. The photo-sensitive region illuminated by the grating receives uniform illumination at an intermediate intensity, thereby providing, after developing, a layer with regions of intermediate thickness.
Abstract:
A chemical-mechanical polishing apparatus including a table top, a transfer station mounted on the table top, a plurality of polishing stations mounted on the table top, a plurality of washing stations, and a plurality of carrier heads supported by a support member rotatable about an axis. Each washing station is located between a first polishing station and either a second polishing station or the transfer station, and the transfer station and the plurality of polishing stations are arranged at approximately equal angular intervals about the axis.
Abstract:
Methods are provided for forming a circuit component on a workpiece substrate. The methods comprise the steps of depositing a dielectric material over the substrate; etching a pattern through the dielectric material to expose a portion of the substrate; depositing a barrier metal over the dielectric material and the exposed portion of the substrate; depositing a conductive metal over the barrier metal, the deposited conductive metal having a thickness sufficient to fill the etched pattern; planarizing the conductive metal to form a planar metal layer; and polishing the metal layer and the barrier metal in a single polishing step using an abrasive-free polish until the dielectric material surrounding the pattern is exposed.
Abstract:
Methods are provided for forming a circuit component on a workpiece substrate. The methods comprise the steps of depositing a dielectric material over the substrate; etching a pattern through the dielectric material to expose a portion of the substrate; depositing a barrier metal over the dielectric material and the exposed portion of the substrate; depositing a conductive metal over the barrier metal, the deposited conductive metal having a thickness sufficient to fill the etched pattern; planarizing the conductive metal to form a planar metal layer; and polishing the metal layer and the barrier metal in a single polishing step using an abrasive-free polish until the dielectric material surrounding the pattern is exposed.
Abstract:
A carrier head for a chemical mechanical polishing system includes a substrate sensing mechanism. The carrier head includes a base and a flexible member connected to the base to define a chamber. A lower surface of the flexible member provides a substrate receiving surface. The substrate sensing mechanism includes a sensor to measure a pressure in the chamber and generate an output signal representative thereof, and a processor configured to indicate whether the substrate is attached to the substrate receiving surface in response to the output signal.
Abstract:
A carrier head for a chemical mechanical polishing system includes a substrate sensing mechanism. The carrier head includes a base and a flexible member connected to the base to define a chamber. A lower surface of the flexible member provides a substrate receiving surface. The substrate sensing mechanism includes a sensor to measure a pressure in the chamber and generate an output signal representative thereof, and a processor configured to indicate whether the substrate is attached to the substrate receiving surface in response to the output signal.
Abstract:
The invention relates to an apparatus and process for the vaporization of liquid precursors and deposition of a film on a suitable substrate. Particularly contemplated is an apparatus and process for the deposition of a metal-oxide film, such as a barium, strontium, titanium oxide (BST) film, on a silicon wafer to make integrated circuit capacitors useful in high capacity dynamic memory modules.
Abstract:
A substrate polishing scheme (apparatus and method) is described according to which a polishing surface of a polishing sheet is driven in a generally linear direction by a drive mechanism, a surface of a substrate is held against the polishing surface of the polishing sheet by a polishing head, and the substrate is probed through the polishing sheet by a monitoring system.