摘要:
A fin field effect transistor includes a fin protruding from a semiconductor substrate, a gate insulating layer formed so as to cover upper and lateral surfaces of the fin, and a gate electrode formed across the fin so as to cover the gate insulating layer. An upper edge of the fin is rounded so that an electric field concentratedly applied to the upper edge of the fin through the gate electrode is dispersed. A thickness of a portion of the gate insulating layer formed on an upper surface of the fin is greater than a thickness of a portion of the gate insulating layer formed on a lateral surface of the fin, in order to reduce an electric field applied through the gate electrode.
摘要:
A CMOS transistor structure and related method of manufacture are disclosed in which a first conductivity type MOS transistor comprises an enhancer and a second conductivity type MOS transistor comprises a second spacer formed of the same material as the enhancer. The second conductivity type MOS transistor also comprises a source/drain region formed in relation to an epitaxial layer formed in a recess region.
摘要:
A method of fabricating a semiconductor device having a dual gate allows for the gates to have a wide variety of threshold voltages. The method includes forming a gate insulation layer, a first capping layer, and a barrier layer in the foregoing sequence across a first region and a second region on a substrate, exposing the gate insulation layer on the first region by removing the first capping layer and the barrier layer from the first region, forming a second capping layer on the gate insulation layer in the first region and on the barrier layer in the second region, and thermally processing the substrate on which the second capping layer is formed. The thermal processing causes material of the second capping layer to spread into the gate insulation layer in the first region and material of the first capping layer to spread into the gate insulation layer in the second region. Thus, devices having different threshold voltages can be formed in the first and second regions.
摘要:
A semiconductor device that has a dual gate having different work functions is simply formed by using a selective nitridation. A gate insulating layer is formed on a semiconductor substrate including a first region and a second region, on which devices having different threshold voltages are to be formed. A diffusion inhibiting material is selectively injected into the gate insulating layer in one of the first region and the second region. A diffusion layer is formed on the gate insulating layer. A work function controlling material is directly diffused from the diffusion layer to the gate insulating layer using a heat treatment, wherein the gate insulting layer is self-aligned capped with the selectively injected diffusion inhibiting material so that the work function controlling material is diffused into the other of the first region and the second region. The gate insulating layer is entirely exposed by removing the diffusion layer. A gate electrode layer is formed on the exposed gate insulating layer. A first gate and a second gate having different work functions are respectively formed in the first region and the second region by etching the gate electrode layer and the gate insulating layer.
摘要:
A sputtering target includes a tungsten (W)-nickel (Ni) alloy, wherein the nickel (Ni) is present in an amount of between about 0.01 weight % and about 1 weight %.
摘要:
A method of manufacturing a semiconductor device may include forming a first interlayer insulation layer on a substrate including at least one gate structure formed thereon, the substrate having a plurality of source/drain regions formed on both sides of the at least one gate structure, forming at least one buried contact plug on at least one of the plurality of source/drain regions and in the first interlayer insulation layer, forming a second interlayer insulation layer on the first interlayer insulation layer and the at least one buried contact plug, exposing the at least one buried contact plug in the second interlayer insulation layer by forming at least one contact hole, implanting ions in the at least one contact hole in order to create an amorphous upper portion of the at least one buried contact plug, depositing a lower electrode layer on the second interlayer insulation layer and the at least one contact hole, and forming a metal silicide layer in the amorphous upper portion of the at least one buried contact plug.
摘要:
A method of fabricating a semiconductor device having a dual gate allows for the gates to have a wide variety of threshold voltages. The method includes forming a gate insulation layer, a first capping layer, and a barrier layer in the foregoing sequence across a first region and a second region on a substrate, exposing the gate insulation layer on the first region by removing the first capping layer and the barrier layer from the first region, forming a second capping layer on the gate insulation layer in the first region and on the barrier layer in the second region, and thermally processing the substrate on which the second capping layer is formed. The thermal processing causes material of the second capping layer to spread into the gate insulation layer in the first region and material of the first capping layer to spread into the gate insulation layer in the second region. Thus, devices having different threshold voltages can be formed in the first and second regions.
摘要:
Methods of forming trench-based isolation regions with reduced susceptibility to edge defects include the steps of forming trenches at a face of a semiconductor substrate and then filling the trenches with electrically insulating regions. However, to prevent exposure of those portions of the substrate extending adjacent the trenches, supplemental oxide regions are formed at the interfaces between the upper portions of the trench sidewalls and the electrically insulating regions in the trenches, by exposing the electrically insulating regions to an oxidation atmosphere at a temperature in a range between about 950.degree. C. and 1100.degree. C. In particular, the supplemental oxide regions are formed as thermal oxides of higher density than the electrically insulating regions in the trenches. Thus, the supplemental oxide regions are more resistant to chemical etchants. Accordingly, when the electrically insulating regions are planarized and etched during back end processing steps, the supplemental oxide regions will not be entirely etched and, therefore, those portions of the substrate (i.e., active regions) extending adjacent the trenches will not be exposed.