Abstract:
The present invention provides a GIP analog, which is derived from GIP (1-29, SEQ ID NO: 1), has both GLP-1 agonist activity and GIPR stimulation activity, and comprises an amino acid sequence represented by the following formula I: Tyr-A2-A3-Gly-Thr-Phe-A7-Ser-Asp-Tyr-Ser-A12-A13-A14-A15-Lys-A17-A18-A19-A20-A21-A22-A23-A24-Trp-Leu- A27-A28-A29-Y. The present invention also provides a pharmaceutical composition comprising the GIP analog and use thereof.
Abstract translation:本发明提供衍生自GIP(1-29,SEQ ID NO:1)的GIP类似物具有GLP-1激动剂活性和GIPR刺激活性,并且包含由下式I表示的氨基酸序列: Tyr-A2-A3-Gly-Thr-Phe-A7-Ser-Asp-Tyr-Ser-A12-A13-A14-A15-Lys-A17-A18-A19-A20-A21-A22-A23-A24-Trp- Leu- A27-A28-A29-Y。 本发明还提供了包含GIP类似物及其用途的药物组合物。
Abstract:
The present invention provides a GIP analog, which is derived from GIP (1-29, SEQ ID NO: 1), has both GLP-1 agonist activity and GIPR stimulation activity, and comprises an amino acid sequence represented by the following formula I: Tyr-A2-A3-Gly-Thr-Phe-A7-Ser-Asp-Tyr-Ser-A12-A13-A14-A15-Lys-A17-A18-A19-A20-A21-A22-A23-A24-Trp-Leu-A27-A28-A29-Y. The present invention also provides a pharmaceutical composition comprising the GIP analog and use thereof.
Abstract translation:本发明提供衍生自GIP(1-29,SEQ ID NO:1)的GIP类似物具有GLP-1激动剂活性和GIPR刺激活性,并且包含由下式I表示的氨基酸序列: Tyr-A2-A3-Gly-Thr-Phe-A7-Ser-Asp-Tyr-Ser-A12-A13-A14-A15-Lys-A17-A18-A19-A20-A21-A22-A23-A24-Trp- Leu-A27-A28-A29-Y。 本发明还提供了包含GIP类似物及其用途的药物组合物。
Abstract:
The present invention discloses an apparatus for baking a glass substrate, which includes: a baking oven, a support component, a temperature sensing device, a heating device, a cooling device, and a temperature controlling device. The present invention further discloses a method for baking a glass substrate. The present invention is capable of dynamically controlling the temperature of the support component, which contacts the glass substrate. The temperature of the glass substrate keeps identical and the temperature of the support component keep identical, so as to prevent a Mura defect appearing on the glass substrate.
Abstract:
A method and a device for recording media are provided. The method includes performing a media recording process. During the media recording process, periodically media index information are generated according to currently written media chunks. The generated media index information is saved.
Abstract:
An upper-bearing typed movable formwork used for cast-in-situ of concrete box girder in bridge engineering, comprising left and right legs (7) which are respectively fixed on a pier, left and right longitudinal/transverse sliding mechanisms (9), bearing devices and a template system. The left and right longitudinal/transverse sliding mechanisms (9) are respectively arranged on the left and right legs (7) and can move horizontally along the left and right legs (7), the bearing devices are respectively fixed on the left and right longitudinal/transverse sliding mechanisms (9), the template system comprises a bottom formwork (6), an internal formwork (3), a left formwork and a right formwork, the bottom formwork (6) is formed by screw connection of a left bottom formwork and a right bottom formwork (6a,6b) which are symmetrical about the axis line of the concrete box girder, two ends of the bottom formwork are respectively fixed on two opposite internal side surfaces of the left main beam and the right main beam (1). The movable formwork also comprises a plurality of adjustable supporting rods (14) used for supporting the template system.
Abstract:
Provided herein are peptide combinations comprising a GIP agonist peptide and a glucagon antagonist peptide. In some embodiments, the peptide combination is provided as a composition, e.g., a pharmaceutical composition, while in other embodiments, the peptide combination is provided as a kit. In yet other embodiments, the peptide combination is provided as a conjugate, e.g., a fusion peptide, a heterodimer. In specific aspects, the GIP agonist peptide is an analog of native human glucagon. In specific aspects, the glucagon antagonist peptide is an analog of native human glucagon. In some embodiments, the GIP agonist peptide is covalently attached to the glucagon antagonist peptide via a linker. Methods of treating a disease, e.g., a metabolic disorder, such as diabetes and obesity, comprising administering the peptide compositions described herein are further provided.
Abstract:
In one aspect, a system for performing a pre-takeoff passenger safety procedure for a pilotless vertical takeoff and landing (VTOL) aircraft is disclosed. The system can begin by receiving authentication information from each of one or more passengers attempting to enter a passenger cabin of the VTOL. The system then authenticates each of the one or more passengers as an authorized passenger based on the authentication information. If the one or more passengers are successfully authenticated, the system allows the one or more passengers to enter the passenger cabin of the VTOL aircraft, and subsequently performs a set of onboard pre-takeoff checks to determine if the VTOL aircraft and the one or more passengers are safe for takeoff. In response to determining that the VTOL aircraft and the one or more passengers are safe for takeoff, the system further confirms readiness of each of the passengers for immediate takeoff.
Abstract:
In accordance with various embodiments, a set of features are described for enabling an application server platform for telecom based applications. A system for providing an application server for telecom-based applications can include an application server that includes a session initiation protocol (SIP) adapter. The SIP adapter can use a connection oriented protocol and provides interactions with application code in an actor of said application server by means of asynchronized SIP protocol events. The SIP adapter can also provide stateless node mapping to a stateful server node hosting a specific session for the actor.
Abstract:
Provided herein are peptide combinations comprising a GIP agonist peptide and a glucagon antagonist peptide. In some embodiments, the peptide combination is provided as a composition, e.g., a pharmaceutical composition, while in other embodiments, the peptide combination is provided as a kit. In yet other embodiments, the peptide combination is provided as a conjugate, e.g., a fusion peptide, a heterodimer. In specific aspects, the GIP agonist peptide is an analog of native human glucagon. In specific aspects, the glucagon antagonist peptide is an analog of native human glucagon. In some embodiments, the GIP agonist peptide is covalently attached to the glucagon antagonist peptide via a linker. Methods of treating a disease, e.g., a metabolic disorder, such as diabetes and obesity, comprising administering the peptide compositions described herein are further provided.