Abstract:
The multiprocessor system includes one or a plurality of main processors and a plurality of sub-processors, and an execution control circuit which conducts execution control of each the sub-processors, wherein the execution control circuit includes an execution control processor for execution control processing of each the sub-processors, a control bus output unit for activation of a command to each the sub-processors, a status bus input unit for status notification from each the sub-processors, a determination circuit which determines whether or not the status notification has one-to-one dependency with a processing command to be issued next on an operation sequence and is to be processed at a high speed, a status accelerator which issues a corresponding processing activation command when the status notification is to be processed at a high speed, and a status FIFO control unit which processes the status notification by using the execution control processor.
Abstract:
An encoding/decoding processor includes a coprocessor that is dedicated to encoding and decoding processes, where the coprocessor comprises: a parameter register that stores externally given operation modes and the settings of generation polynomials; and a calculation circuit that operates on the basis of the operation modes and the generation polynomials and that performs calculations, which are required for the encoding and decoding processes, by a plurality of bits per cycle in a parallel manner, and the coprocessor further comprises memory controllers, which include: address generator circuits for outputting the addresses of the storage devices; FIFO circuits for temporarily storing data; and data packing circuits for making up predetermined numbers of bits of data for output.
Abstract:
An apparatus may include a print head, multiple roller pairs to convey a sheet, a direct sensor, and a control unit. The print head prints on a conveyed sheet. The multiple roller pairs nip the sheet at an upstream side of the print head to convey the sheet, nip the sheet at a downstream side of the print head, and nip the sheet at an upstream side of a first roller pair to convey the sheet. The direct sensor measures a surface of the conveyed sheet at a measurement position between a nip position of the first roller pair and a nip position of a third roller pair to obtain information relating to a movement state of the sheet. The control unit controls to correct at least one of driving control of the print head and conveying control of the sheet, based on the information obtained by the direct sensor.
Abstract:
In order to enable to quickly and efficiently execute, by one system, various modulation/demodulation/synchronous processes in a plurality of radio communication methods, a co-processor (22) for complex arithmetic processing, which forms a processor system (100), includes a complex arithmetic circuit (22) that executes for complex data a complex arithmetic operation required for radio communication in accordance with an instruction from a primary processor (10), and a memory controller (20, 21) that operates in parallel with the complex arithmetic circuit and accesses a memory. A trace circuit provided in the complex arithmetic circuit (22) monitors arithmetic result data for first complex data series sequentially read from the memory, and detects a normalization coefficient for normalizing the arithmetic result data.
Abstract:
A device includes a conveying roller configured to convey a recording medium, a follower roller configured to press the recording medium against the conveying roller, a detector configured to detect a direction of skew of the conveyed recording medium, and a changer configured to change a state of contact between the recording medium and the conveying roller in accordance with a result of the detection by the detector such that a length of a portion of the conveying roller that is in contact with the recording medium in a conveyance direction is larger on a side toward which the recording medium is skewed than on an opposite side.
Abstract:
The multiprocessor system includes one or a plurality of main processors and a plurality of sub-processors, and an execution control circuit which conducts execution control of each the sub-processors, wherein the execution control circuit includes an execution control processor for execution control processing of each the sub-processors, a control bus output unit for activation of a command to each the sub-processors, a status bus input unit for status notification from each the sub-processors, a determination circuit which determines whether or not the status notification has one-to-one dependency with a processing command to be issued next on an operation sequence and is to be processed at a high speed, a status accelerator which issues a corresponding processing activation command when the status notification is to be processed at a high speed, and a status FIFO control unit which processes the status notification by using the execution control processor.
Abstract:
An apparatus includes a line-type recording head including a plurality of recording elements formed thereon, a holding unit configured to hold a sheet, a conveyance mechanism configured to convey the sheet held by the holding unit to a position of recording by the recording head, a shift mechanism capable of relatively shifting a position of the sheet in a sheet width direction with respect to the recording head while the sheet is fed from the holding unit to the recording position, and a control unit configured to control the conveyance mechanism and the shift mechanism.
Abstract:
A bus monitor circuit that produces a bus monitor output signal on a bus transmitting data between a master and a slave includes an access information/write data FIFO and a read data FIFO. When an attribute of the access information stored at a header of the access information/write data FIFO indicates a write access, it directly outputs a bus monitor output signal indicating access information accompanied with the corresponding write data which is transmitted in the same cycle. When an attribute of the access information stored at the header of the access information/write data FIFO indicates a read access, it waits for the read data FIFO storing the corresponding read data, and then outputs a bus monitor output signal indicating the access information paired with the read data in the same cycle. Thus, it is possible to guarantee the occurrence order of bus access according to a bus interface protocol enabling pipeline transaction, thus outputting a bus monitor output signal indicating a pair of access information and data information.
Abstract:
A sheet conveyance apparatus includes: a guide unit for guiding the side end of the sheet; a first roller pair arranged on the downstream side of the guide unit for conveying the sheet, including a driven roller held in contact with a whole sheet in a sheet width direction; and a second roller pair having a conveyance roller arranged on the downstream side of the roller and adapted to convey the sheet, and a plurality of pinch rollers pinching the sheet in cooperation with the conveyance roller, wherein each of the plurality of pinch rollers applies to the sheet a conveyance force inclined toward a conveyance path side end, which is nearer to the pinch roller, and wherein the smaller the distance between the pinch roller and the conveyance path side end, the greater the inclination of the conveyance force thereof.
Abstract:
A recording apparatus includes a carriage carrying a recording head and being movably supported, the recording head being configured to eject liquid onto a recording medium, a plurality of driven units to be driven by a drive source that generates a driving force, a transmission-switching mechanism configured to switch between the driven units, a carriage locker configured to prevent and allow movement of the carriage, and a transmission-switching locker configured to prevent and allow switching between the driven units. Movement prevention by the carriage locker and switching prevention by the transmission-switching locker are in synchronicity, and movement allowance by the carriage locker and switching allowance by the transmission-switching locker are in synchronicity.