Abstract:
The present invention provides a semiconductor device, including a substrate with a memory region and a logic region, the substrate having a recess disposed in the memory region, a logic gate stack disposed in the logic region, and a non-volatile memory disposed in the recess. The non-volatile memory includes at least two floating gates and at least two control gates disposed on the floating gates, where each floating gate has a step-shaped bottom, and the step-shaped bottom includes a first bottom surface and a second bottom surface lower than the first bottom surface.
Abstract:
A semiconductor device includes a substrate with a memory region and a logic region, a logic gate stack, and a non-volatile gate stack. The substrate has a recess disposed in the memory region. The logic gate stack is disposed in the logic region and has a first top surface. The non-volatile gate stack is disposed in the recess and has a second top surface. The second top surface is lower than the first top surface by a step height.
Abstract:
A manipulating method of a nonvolatile memory is provided and comprises following steps. The nonvolatile memory having a plurality of memory cell is provided. Two adjacent memory cells correspond to one bit and comprise a substrate, a first and another first doping regions, a second doping region, a charge trapping layer, a control gate, a first bit line, a source line and a second bit line different from the first bit line. A first and a second channel are formed. The charge trapping layer is disposed on the first and the second channels. The two adjacent memory cells are programmed by following steps. A first positive and negative voltages are applied to the control gate between the first and the second doping regions and the control gate between the second and the another first doping regions, respectively. A first voltage is applied to the source line.
Abstract:
A method for manufacturing a non-volatile memory structure includes providing a substrate having a memory region and a logic region defined thereon, masking the logic region while forming at least a first gate in the memory region, forming an oxide-nitride-oxide (ONO) structure under the first gate, forming an oxide structure covering the ONO structure on the substrate, masking the memory region while forming a second gate in the logic region, and forming a first spacer on sidewalls of the first gate and a second spacer on sidewalls of the second gate simultaneously.
Abstract:
A resistor between dummy flash structures includes a substrate. The substrate includes a resistor region and a flash region. A first dummy memory gate structure and a second dummy memory gate structure are disposed within the resistor region of the substrate. A polysilicon resistor is disposed between the first dummy memory gate structure and the second dummy memory gate structure. The polysilicon resistor contacts the first dummy memory gate structure and the second dummy memory gate structure.
Abstract:
A RRAM (resistive random-access memory) device includes a bottom electrode line directly on a first metal structure, a top electrode island disposed beside the bottom electrode line, a resistive material sandwiched by a sidewall of the bottom electrode line and a sidewall of the top electrode island, and a cap layer covering a portion of the first metal structure and under the bottom electrode line.
Abstract:
An RRAM structure includes a dielectric layer. A bottom electrode, a resistive switching layer and a top electrode are disposed from bottom to top on the dielectric layer. A spacer is disposed at sidewalls of the bottom electrode, the resistive switching layer and the top electrode. The spacer includes an L-shaped spacer and a sail-shaped spacer. The L-shaped spacer contacts the sidewall of the bottom electrode, the sidewall of the resistive switching layer and the sidewall of the top electrode. The sail-shaped spacer is disposed on the L-shaped spacer. A metal line is disposed on the top electrode and contacts the top electrode and the spacer.
Abstract:
A semiconductor device includes a semiconductor substrate, a gate structure, a source region, a drain region, a first oxide layer, a field plate, and a second oxide layer. The gate structure is disposed on the semiconductor substrate. The source region and the drain region are disposed in the semiconductor substrate and located at two opposite sides of the gate structure respectively. The first oxide layer includes a first portion disposed between the gate structure and the semiconductor substrate and a second portion disposed between the gate structure and the drain region. The field plate is partly disposed above the gate structure and partly disposed above the second portion of the first oxide layer. The second oxide layer includes a first portion disposed between the field plate and the gate structure and a second portion disposed between the field plate and the second portion of the first oxide layer.
Abstract:
A RRAM (resistive random-access memory) device includes a bottom electrode line, a top electrode island and a resistive material. The bottom electrode line is directly on a first metal structure. The top electrode island is disposed beside the bottom electrode line. The resistive material is sandwiched by a sidewall of the bottom electrode line and a sidewall of the top electrode island. The present invention also provides a method of forming said RRAM device.
Abstract:
A method of manufacturing FinFET semiconductor devices in memory regions and logic regions includes the steps of forming a first gate material layer on a substrate and fins, patterning the first gate material layer to form a control gate, forming a second gate material layer on the substrate and fins, performing an etch process to the cell region so that the second gate material layer in the cell region is lower than the second gate material layer in the peripheral region, patterning the second gate material layer to form a select gate in the cell region and a dummy gate in the logic region respectively.