Abstract:
A package structure having silicon through vias connected to ground potential is disclosed, comprising a first device, a second device and a conductive adhesive disposed between the first device and the second device. The first device comprises a substrate having a front surface and a back surface, and a plurality of through silicon vias filled with a conductor formed within the substrate. The first device is externally connected to the second device by wire bonding.
Abstract:
A semiconductor device, including a first semiconductor substrate and a second semiconductor substrate, is provided. A first bonding structure is located on the first semiconductor substrate and includes a first pad having an elongated shape. A second bonding structure is located on the second semiconductor substrate and includes a second pad having an elongated shape. The first semiconductor substrate is bonded to the second semiconductor substrate by bonding the first bonding structure and the second bonding structure. The first pad is bonded to the second pad, and an extension direction of the first pad is different from an extension direction of the second pad.
Abstract:
A semiconductor package structure and a method for forming the same are disclosed. The semiconductor package structure includes a semiconductor die, a molding layer and an inductor. The semiconductor die includes an active surface, a back surface and a sidewall surface between the active surface and the back surface. The molding layer covers the back surface and the sidewall surface of the semiconductor die. The inductor is in the molding layer. The sidewall surface of the semiconductor die faces toward the inductor.
Abstract:
Provided are a three-dimensional integrated circuit (3DIC) and a method of manufacturing the same. The 3DIC includes a first wafer, a second wafer, and a hybrid bonding structure. The second wafer is bonded to the first wafer by the hybrid bonding structure. The hybrid bonding structure includes a blocking layer between a hybrid bonding dielectric layer and a hybrid bonding metal layer.
Abstract:
The present disclosure provides a manufacturing method of a die-stack structure including follow steps. A first wafer including a first die is provided, wherein the first die includes a first substrate material layer, a first interconnect structure, and a first pad, and the first interconnect structure and the first pad are formed on the first substrate material layer in order, and the first substrate material layer has a first contact conductor disposed therein. The first contact conductor is disposed in the first substrate material layer. A second wafer including a second die is provided, wherein the second die includes a second substrate material layer, a second interconnect structure, and a second pad, and the second interconnect structure and the second pad are formed on the second substrate material layer in order, and the second substrate material layer has a second contact conductor disposed therein. A portion of the first substrate material layer is removed to form a first substrate, wherein the first contact conductor is exposed to a surface of the first substrate away from the first interconnect structure. The second wafer is covered on the first substrate such that the first contact conductor is directly physically in contact with the second pad.
Abstract:
A chip-stack structure including a first chip and a second chip located on the first chip is provided. The first chip includes a first substrate, a first interconnect structure, a first pad, and a first contact conductor. The first interconnect structure is located on a first surface of the first substrate. The first pad is located on the first interconnect structure. The first contact conductor is located in the first substrate and exposed on a second surface of the first substrate opposite to the first surface. The second chip includes a second substrate, a second interconnect structure, a second pad, and a second contact conductor. The second interconnect structure is located on the second substrate. The second pad is located on the second interconnect structure. The second contact conductor is located in the second substrate, wherein the first contact conductor is directly physically in contact with the second pad.
Abstract:
A semiconductor structure includes a substrate having a frontside surface and a backside surface. A through-substrate via extends into the substrate from the frontside surface. The through-substrate via comprises a top surface. A metal cap covers the top surface of the through-substrate via. A plurality of cylindrical dielectric plugs is embedded in the metal cap. The cylindrical dielectric plugs are distributed only within a central area of the metal cap. The central area is not greater than a surface area of the top surface of the through-substrate via.
Abstract:
A wafer to wafer structure includes a first wafer, a second wafer. A first bonding layer and a second bonding layer are disposed between the first wafer and the second wafer. A plurality of first interconnects are disposed within the he first bonding layer. A plurality of second interconnects are disposed within the second bonding layer. An interface is disposed between the first bonding layer and the second bonding layer. At least a through silicon via penetrates the first wafer, the first bonding layer and the interface to enter the second bonding layer. The through silicon via contacts one of the first interconnects and one of the second interconnects.
Abstract:
The present disclosure relates to an interposer structure and a manufacturing method thereof. The interposer structure includes a first dielectric layer, a conductive pad, and a bump. The conductive pad is disposed in the first dielectric layer, wherein a top surface of the conductive pad is exposed from a first surface of the first dielectric layer, the conductive pad further includes a plurality of connection feet, and the connection feet protrude from a bottom surface of the conductive pad to a second surface of the first dielectric layer. The bump is disposed on the second surface of the first dielectric layer, and the bump directly contacts to the connection feet. Through the aforementioned interposer structure, it is sufficient to achieve the purpose of improving the electrical performance of the semiconductor device and avoiding the signal being loss through the TSV.
Abstract:
A method for fabricating integrated structure is disclosed. The method includes the steps of: providing a substrate; forming a through-silicon hole in the substrate; forming a patterned resist on the substrate, wherein the patterned resist comprises at least one opening corresponding to a redistribution layer (RDL) pattern and exposing the through-silicon hole and at least another opening corresponding to another redistribution layer (RDL) pattern and connecting to the at least one opening; and forming a conductive layer to fill the through-silicon hole, the at least one opening and the at least another opening in the patterned resist so as to form a through-silicon via, a through-silicon via RDL pattern and another RDL pattern in one structure.