Abstract:
A method, performed by a server device, may include receiving a request to activate an application session, the request being received from a user equipment on behalf of a particular application installed on the user equipment. The method may further include determining one or more application requirements associated with the particular application; determining conditions associated with one or more application servers; selecting a particular one of the one or more application servers based on the determined one or more application requirements and based on the determined conditions; and setting up the application session between the user equipment and between the selected particular one of the one or more application servers.
Abstract:
A wireless communication device may include a baseband processing unit comprising a wakeup detector configured to receive a wireless signature beacon signal; determine that the received wireless signature beacon signal matches the selected wakeup signature beacon signal; and generate a wake up signal, in response to determining that the received wireless signature beacon signal matches the selected wakeup signature beacon signal. The wireless communication device may further include an application processing unit comprising a power manager configured to cause the wireless communication device to enter a power saving mode; receive the wake up signal from the wakeup detector; and perform a wakeup process, in response to receiving the wakeup signal wherein the wakeup process causes the wireless communication device to exit the power saving mode.
Abstract:
A device is configured to obtain network information indicating an amount of client devices, of each device type, registered in an operator network. The device is configured to obtain client device information identifying a client device and determine a device type of the client device based on the client device information. The device is configured to determine a frequency for the client device to use to communicate with the operator network based on the device type of the client device and the amount of client devices of each of the device types registered in the operator network. The device is configured to provide an instruction to the client device to use the frequency to communicate with the operator network.
Abstract:
Digital signal processors (DSPs) process the digital baseband signals associated with CPRI links between BBUs and RRHs. The DSPs may be implemented at the RRH nodes (e.g., at the link leading to the BBU node), at the BBU node (e.g., at the links leading to the RRH nodes), or at both. The DSPs may be used to increase performance of the RAN. For example, the DSPs may implement digital filters designed to enhance the performance of the RAN.
Abstract:
A system may use optical character recognition (“OCR”) techniques to identify license plates or other textual information associated with vehicles. Based on this OCR information, the system may determine additional information, such as users associated with the vehicles. The system may further obtain other information, such as history information associated with the vehicles and/or the users (e.g., via an “opt-in” data collection service). Ad content may be selected based on trends associated with the users and/or vehicles, and may be presented via “smart” billboards (e.g., billboards that may dynamically display different content).
Abstract:
A system may include a macro cell base station configured to determine a service quality associated with the macro cell base station; determine whether the service quality is below a quality threshold; and instruct a small cell base station to switch from a sleep mode to an awake mode, when the service quality is below the quality threshold. The system may further include a small cell base station, located within a coverage area of the macro cell base station, configured to enter an awake mode, when instructed to enter the awake mode by the macro cell base station; and inform the macro cell base station that the small cell base station is in awake mode. The macro cell base station may be further configured to hand over one or more user devices to the small cell base station, when the small cell base station is in the awake mode.
Abstract:
A system includes a communication section communicably connected to a network, and configured to receive requests for data flows from user equipment attached to the network. The system may further include a flow path determination section configured to determine, for each data flow requested, an optimal signal path from among a plurality of potential signal paths based on substantially current characteristics of the potential signal paths and on characteristics of the data flow requested. The system may further include a command plane section configured to control routing of each requested data flow in accordance with the optimal signal path determined by the flow path determination section for the respective data.
Abstract:
A reporting server receives reports on content items being accessed by a plurality of UE devices through a first multicast/broadcast single frequency network (MBSFN). The reporting server determines, for each content item being accessed, which of the UE devices is accessing the content item. The UE devices are then grouped by the accessed content items such that at least one content item is accessed by a first group of UE devices and not accessed by a second group of UE devices. The reporting server then sends data representing the first and second groups to a broadcast video provisioning system (BVPS) with a recommendation to split the MBSFN into second and third MBSFNs. In another implementation, the reporting server receives reports from fourth and fifth MBSFNs and recommends joining the fourth and fifth MBSFNs to form a sixth MBSFN if broadcast bandwidth requirements are met.
Abstract:
Voice calls may be filtered and/or modified to enhance the clarity of a speaker's voice. In one implementation, a device may receive an indication, from a caller associated with a call, that speech of the caller is to be modified to deemphasize an accent of the caller. The device may modify, based on the received indication, the speech of the caller to deemphasize the accent of the caller and transmit the modified speech to a callee associated with the call.
Abstract:
A system may be configured to receive information regarding a geographical location of a user device; and compare the geographical location of the user device to geographical locations of a set of gateway devices. The gateway devices may be associated with a cellular network, and the gateway devices may communicatively couple one or more network devices associated with the cellular network to an access point that is not associated with the cellular network. The system may further select a particular gateway device based on the geographical location of the user device and the geographical locations of the particular gateway device; and store or output information regarding the selected particular gateway device.