Abstract:
Described is a mobile phase fitting having reduced corrosion and erosion. The fitting includes a coupling body, compression screw, compression member and gasket. The coupling body has a threaded bore at one end, a tapered cavity, a narrow bore and a fluid channel. The compression screw has an axial bore to receive a tube and a threaded outer surface in engagement with the threaded bore of the coupling body. The compression member is disposed in the tapered cavity and has an axial opening to pass the tube and a tapered surface to engage a surface of the tapered cavity. The gasket is disposed in the narrow bore and has one surface in contact with the first internal surface and has a parallel surface to receive an end face of the tube. Mobile phase flows along a path that includes the tube, an opening in the gasket and the fluid channel.
Abstract:
Described are a method and a system for diluting a sample at a location of injection in a liquid chromatography system. The method includes loading a sample into a first fluid channel, separating a flow of a mobile phase into a first flow in the first fluid channel and a second flow in a second fluid channel, and combining the sample that is displaced from the first fluid channel and the mobile phase exiting the second fluid channel at the location of injection into the system flow to thereby generate a diluted sample in the system flow. The dilution ratio of the diluted sample is responsive to the flow rates of the first and second flows. Advantageously, the flow rates can be changed by changing the flow restriction of one of the fluid channels. Thus providing the proper flow restriction enables a user to obtain a desired dilution ratio.
Abstract:
Described are a method and a system for injecting a sample into a flow of a liquid chromatography system. The method includes combining a flow of a sample and a flow of a mobile phase to create a diluted sample in the system flow. The volumetric flow rate of the sample is controlled to be at a value that yields a desired dilution ratio for the diluted sample. The particular value at which the volumetric flow rate is maintained can be determined from the desired value of the dilution ratio and the volumetric flow rate of the mobile phase. System embodiments include a syringe that can be used to provide a sample solution at a controllable volumetric flow rate for combination with a high pressure mobile phase.
Abstract:
Described is a mobile phase fitting having reduced corrosion and erosion. The fitting includes a coupling body, compression screw, compression member and gasket. The coupling body has a threaded bore at one end, a tapered cavity, a narrow bore and a fluid channel. The compression screw has an axial bore to receive a tube and a threaded outer surface in engagement with the threaded bore of the coupling body. The compression member is disposed in the tapered cavity and has an axial opening to pass the tube and a tapered surface to engage a surface of the tapered cavity. The gasket is disposed in the narrow bore and has one surface in contact with the first internal surface and has a parallel surface to receive an end face of the tube. Mobile phase flows along a path that includes the tube, an opening in the gasket and the fluid channel.
Abstract:
The present disclosure relates to phase detection in multi-phase fluids where two fluid phases can be present in the fluid. Phase detection apparatus and methods are disclosed for determining the phase(s) (e.g., supercritical, liquid, and/or gas) of a fluid in a multi-phase fluid system, such as carbon dioxide based separation and chromatography system.
Abstract:
Described are methods in which the retention times of a chromatographic column are adjusted through the control of the temperature of a mobile phase at the inlet to the chromatographic column. The temperature of the mobile phase at the inlet is different from the temperature of the chromatographic column. Adjustment of the temperature of the mobile phase at the inlet can be used as part of a method to transfer a chromatographic method from one liquid chromatography system to another liquid chromatography system. The method can alternatively be adapted for trapping a sample at the head of a chromatographic column to reduce the amount of band broadening of the sample from the sample injector of a liquid chromatography system. A gradient elution can then be performed to cause the concentrated volume of the analyte in the sample to elute in a tight band, resulting in improved measurement sensitivity.
Abstract:
A method for injecting a diluted sample in a chromatography system includes merging a flow of a sample and a flow of a diluent to form a flow of a diluted sample. A dilution ratio of the diluted sample equals a sum of the volumetric flow rates of the sample and the diluent divided by the volumetric flow rate of the sample. The diluted sample is stored in a holding element before injection into a chromatographic system flow. Sample dilution occurs under low pressure relative to the chromatographic flow thereby allowing lower pressure sample and diluent syringes to be used. Other benefits include reduced compressibility and a reduction in leaks due to the lower pressure operation. The method avoids problems associated with manual techniques which can introduce errors due, for example, to loss of sample, sample precipitation and adsorption of sample to vials.
Abstract:
A sampling system comprising an external sampling assembly in fluidic communication with a process sample manager is provided herein. The sampling system can automatically acquire sample from one or more sources of sample to prepare sample for injection into a column or detector. The external sampling assembly has an external sampling valve connected to an external pump and is in fluidic communication with a process sample manager. The external sampling valve has a first configuration and a second configuration useful in three steps of drawing, loading and discharging sample. Two selection valves can be connected to a plurality of external sampling valves for sequential sampling of multiple sources of sample. Sample can also be diluted in the process sample manager and then combined in a solvent composition stream for injection into the column or the detector.
Abstract:
A rotary valve used in chromatography includes a stator with a plurality of stator ports arranged on the stator. The stator further includes a stator groove connected at one end to a first stator port and terminating between the first stator port and a second stator port adjacent to the first stator port. A rotor, rotatably fitted to the stator, has a plurality of arcuate channels arranged in an asymmetrical pattern on the rotor. Each rotor channel connects to one or more of the stator ports. Different connections of the rotor channels to the stator ports produce at least three different positions for the injection valve. The three different positions provide a complete chromatography sample injection sequence using only a single valve.
Abstract:
A method for injecting a diluted sample in a chromatography system includes merging a flow of a sample and a flow of a diluent to form a flow of a diluted sample. A dilution ratio of the diluted sample equals a sum of the volumetric flow rates of the sample and the diluent divided by the volumetric flow rate of the sample. The diluted sample is stored in a holding element before injection into a chromatographic system flow. Sample dilution occurs under low pressure relative to the chromatographic flow thereby allowing lower pressure sample and diluent syringes to be used. Other benefits include reduced compressibility and a reduction in leaks due to the lower pressure operation. The method avoids problems associated with manual techniques which can introduce errors due, for example, to loss of sample, sample precipitation and adsorption of sample to vials.