Abstract:
A moving apparatus that is capable of properly driving an accessory while preventing driven parts from being driven when the accessory is driven in a state where the driven parts are at rest. In the moving apparatus VE1, out of first to third elements S, C, and R configured such that they rotate during transmission of motive power therebetween while maintaining a collinear relationship in rotational speed, the first element S is mechanically connected to a first rotor 13 of a first rotating machine 11, one of the second and third elements C and R is mechanically connected to an output portion 3a of a prime mover 3 and an input portion 32 of an accessory 31, and the other of the second and third elements C and R is mechanically connected to driven parts DW and DW. Further, when the accessory 31 is driven in a state where the driven parts DW and DW are at rest during stoppage of the prime mover 3, the operation of restriction means 21 for restricting rotation of the first rotating machine 11 and the driven parts DW and DW is controlled such that motive power is input to the input portion 32, and that the rotational speed of the driven parts DW and DW is restricted to approximately 0.
Abstract:
A hybrid vehicle is driven by a power unit which includes: a first rotating machine including a first rotor, a first stator, and a second rotor, wherein the number of magnetic poles generated by an armature row of the first stator and one of the first rotor and the second rotor are connected to a drive shaft; a power engine, wherein an output shaft of the power engine is connected to the other of the first rotor and the second rotor; a second rotating machine; and a capacitor. A traveling mode of the hybrid vehicle includes an EV traveling mode and an ENG traveling mode, wherein the hybrid vehicle travels with a motive power from at least one of the first rotating machine and the second rotating machine in the EV traveling mode, and the hybrid vehicle travels with a motive power from the power engine in ENG traveling mode. The hybrid vehicle includes: an EV traveling mode predicting unit that predicts a switching from the ENG traveling mode to the EV traveling mode; and a controller that controls a remaining capacity of the capacitor in accordance with prediction result obtained by the EV traveling mode predicting unit so as to change a target value of the remaining capacity. Accordingly, it is possible to achieve reduction in the size and cost of the power unit and enhance the driving efficiency of the power unit.
Abstract:
In a hybrid vehicle, a motor includes a first rotor having permanent magnets, and a second rotor having a cores. The first rotor is connected to front wheels, and the second rotor to an engine. When the magnetic poles of rotating magnetic fields of armatures and of the permanent magnets are in respective positions opposed to each other, if either of the magnetic poles of the rotating magnetic fields and either of the magnetic poles of the permanent magnets have polarities different from each other, the others of the magnetic poles of the rotating magnetic fields and of the magnetic poles of the permanent magnets have the same polarities. If either of the cores are between the magnetic poles of the rotating magnetic fields and of the permanent magnets, the others are positioned between adjacent two pairs of the magnetic poles of the rotating magnetic fields and the permanent magnets.
Abstract:
A rotor body for an electric motor is comprised of connecting outer peripheral portions of first and second flange members made of electrically conductive material to the opposite ends of a plurality of connection members made of electrically conductive material of weak magnetic material arranged at predetermined distances therebetween in the circumferential direction with bolts and by supporting induction magnetic poles made of soft magnetic material between the connection members which are adjacent in the circumferential direction. Coupling portions of the first and second flange members and the connection member are electrically insulated by insulation coating so that an eddy current flowing in a closed circuit comprised of the first flange member, the connection member, the second flange member and the other connection member can be reduced and heat dissipation and energy loss accompanied by the eddy current can be minimized at the time of an operation.
Abstract:
To provide a power plant which is capable of improving the driving efficiency and electric power-generating efficiency thereof. A first transmission 20 is connected between the output shaft 3a of an internal combustion engine 3 and driven parts DW and DW, which are connected to each other. A generator-motor 30 includes a stator 32 for generating magnetic fields and first and second rotors 31 and 33, and carries out energy input and output between the stator 32 and the first and second rotors 31 and 33 during generation of rotating magnetic fields. Along with the energy input and output, the rotating magnetic fields and the first and second rotors 31 and 33 rotate while maintaining such a linear speed relationship that the difference between the rotational speed of the magnetic fields and that of the second rotor 33, and the difference between the rotational speed of the second rotor 33 and that of the first rotor 31 are equal to each other. One of the first and second rotors 31 and 33 is connected between the output shaft 3a of the engine 3 and the first transmission 20, and the other to the driven parts DW and DW.
Abstract:
A rotor body for an electric motor is comprised of connecting outer peripheral portions of first and second flange members made of electrically conductive material to the opposite ends of a plurality of connection members made of electrically conductive material of weak magnetic material arranged at predetermined distances therebetween in the circumferential direction with bolts and by supporting induction magnetic poles made of soft magnetic material between the connection members which are adjacent in the circumferential direction. Coupling portions of the first and second flange members and the connection member are electrically insulated by insulation coating so that an eddy current flowing in a closed circuit comprised of the first flange member, the connection member, the second flange member and the other connection member can be reduced and heat dissipation and energy loss accompanied by the eddy current can be minimized at the time of an operation.
Abstract:
A power plant which is capable of improving the drive efficiency and the power generation efficiency thereof when the electric power is generated using the power of a driven part thereof. A power plant has an internal combustion engine having a crankshaft, and a rotary motor having a rotor. A planetary gear train includes a sun gear, a ring gear, and a carrier rotatably supporting a planetary gear in mesh with the sun gear and the ring gear. The sun gear and the ring gear are connected to drive wheels. The carrier is connected to the crankshaft. The rotor is connected between one of the sun gear and the ring gear and the drive wheels. A transmission is connected between the other of the gears and the drive wheels, for varying a speed of power of the engine and transmitting the power to the drive wheels.
Abstract:
Coil windings are provided on each predetermined pair of adjoining tooth portions in a 8-like configuration by: winding a lead wire around one of the tooth portions a predetermined number of times, starting from a point adjacent to one side portion of a teeth-adjoining region; then winding the lead wire around the other tooth portion the same number of times, starting from a point adjacent to the other side portion of the teeth-adjoining region opposite from the one side portion; and terminating the winding of the lead wire at a point adjacent to the teeth-adjoining region.
Abstract:
A power plant which is capable of improving the drive efficiency and the power generation efficiency thereof when the electric power is generated using the power of a driven part thereof. A power plant has an internal combustion engine having a crankshaft, and a rotary motor having a rotor. A planetary gear train includes a sun gear, a ring gear, and a carrier rotatably supporting a planetary gear in mesh with the sun gear and the ring gear. The sun gear and the ring gear are connected to drive wheels. The carrier is connected to the crankshaft. The rotor is connected between one of the sun gear and the ring gear and the drive wheels. A transmission is connected between the other of the gears and the drive wheels, for varying a speed of power of the engine and transmitting the power to the drive wheels.
Abstract:
A power plant which is capable of reducing the size and costs thereof and attaining high driving efficiency. In the power plant 1, the ratio between the number of first armature magnetic poles that form a first rotating magnetic field generated by a first stator 23 of a first rotating machine 21, the number of first magnetic poles 24a of a first rotor 24, and the number of first soft magnetic material elements 25a of a second rotor 25 disposed between the two 23 and 24 is set to 1:m:(1+m)/2 (m≠1.0), and the ratio between the number of second armature magnetic poles that form a second rotating magnetic field generated by a second stator 33 of a second rotating machine 31, the number of second magnetic poles 34a of a third rotor 34, and the number of second soft magnetic material elements 35a of a fourth rotor 35 disposed between the two 33 and 34 is set to 1:n:(1+n)/2 (n≠1.0). The two stators 23 and 33 are connected to each other. The first and fourth rotors 24 and 35 are connected to driven parts DW and DW, and the second and third rotors 25 and 34 are connected to an output portion 3a of a heat engine 3.