Turn on time acceleration of a cascode amplifier

    公开(公告)号:US10938349B1

    公开(公告)日:2021-03-02

    申请号:US16692750

    申请日:2019-11-22

    Abstract: Various methods and circuital arrangements for reducing a turn ON time of a cascode amplifier are presented. According to one aspect, a configurable switching arrangement coupled to a cascode transistor of the amplifier shorts a gate of the cascode transistor to a reference ground during an inactive mode of operation of the amplifier. During an active mode of operation of the amplifier, the configurable switching arrangement couples a gate capacitor to the gate of the cascode transistor that is pre-charged to a voltage that is higher than a gate biasing voltage to the cascode transistor, which ensures that cascode transistor turns ON much quicker than the traditional method of grounding the cap, hence provide a final current flow through the cascode amplifier in a shorter time by not limiting the turn ON time of the input transistor. The gate biasing voltage is coupled to the gate capacitor via a resistor. A relationship between the pre-charged voltage, and minimum saturation voltages and threshold voltages of the transistors of the cascode amplifier is also provided.

    5G NR Configurable Wideband RF Front-End LNA
    22.
    发明申请

    公开(公告)号:US20200220567A1

    公开(公告)日:2020-07-09

    申请号:US16242870

    申请日:2019-01-08

    Abstract: Methods and devices addressing design of reconfigurable wideband LNAs to meet stringent gain, noise figure, and linearity requirements with multiple gain modes are disclosed. The disclosed teachings can be used to reconfigure RF receiver front-end to operate in various applications imposing stringent and conflicting requirements, such as 5G NR radios. Wideband and narrowband input and output matching with gain modes using a combination of the same hardware and a switching network are also disclosed.

    Adaptive tuning networks with direct mapped multiple channel filter tuning

    公开(公告)号:US10700658B2

    公开(公告)日:2020-06-30

    申请号:US16029364

    申请日:2018-07-06

    Abstract: A flexible multi-path RF adaptive tuning network switch architecture that counteracts impedance mismatch conditions arising from various combinations of coupled RF band filters, particularly in a Carrier Aggregation-based (CA) radio system. In one version, a digitally-controlled tunable matching network is coupled to a multi-path RF switch in order to provide adaptive impedance matching for various combinations of RF band filters. Optionally, some or all RF band filters include an associated digitally-controlled filter pre-match network to further improve impedance matching. In a second version, some or all RF band filters coupled to a multi-path RF switch include a digitally-controlled phase matching network to provide necessary per-band impedance matching. Optionally, a digitally-controlled tunable matching network may be included on the common port of the multi-path RF switch to provide additional impedance matching capability. In a third version, CA direct mapped adaptive tuning networks include filter tuning blocks for selected lower frequency bands.

    Dual voltage switched branch LNA architecture

    公开(公告)号:US11606067B2

    公开(公告)日:2023-03-14

    申请号:US17189141

    申请日:2021-03-01

    Abstract: Methods and circuital arrangements for turning OFF branches of a multi-branch cascode amplifier are presented. First and second switching arrangements coupled to a branch allow turning OFF the branch while protecting transistors of the branch from a supply voltage that may be greater than a tolerable voltage of the transistors. The first switching arrangement includes a transistor-based switch that is in series connection with the transistors of the branch. The first switching arrangement drops the supply voltage during the OFF state of the branch and provides a conduction path for a current through the branch during the ON state of the branch. A resistor and a shunting switch are coupled to a gate of the transistor-based switch to reduce parasitic coupling effects of the transistor-based switch upon an RF signal coupled to the branch during the ON state and OFF state of the branch.

    Adaptive Tuning Networks with Direct Mapped Multiple Channel Filter Tuning

    公开(公告)号:US20220231654A1

    公开(公告)日:2022-07-21

    申请号:US17669789

    申请日:2022-02-11

    Abstract: A flexible multi-path RF adaptive tuning network switch architecture that counteracts impedance mismatch conditions arising from various combinations of coupled RF band filters, particularly in a Carrier Aggregation-based (CA) radio system. In one version, a digitally-controlled tunable matching network is coupled to a multi-path RF switch in order to provide adaptive impedance matching for various combinations of RF band filters. Optionally, some or all RF band filters include an associated digitally-controlled filter pre-match network to further improve impedance matching. In a second version, some or all RF band filters coupled to a multi-path RF switch include a digitally-controlled phase matching network to provide necessary per-band impedance matching. Optionally, a digitally-controlled tunable matching network may be included on the common port of the multi-path RF switch to provide additional impedance matching capability. In a third version, CA direct mapped adaptive tuning networks include filter tuning blocks for selected lower frequency bands.

Patent Agency Ranking