Abstract:
Provided is an apparatus for removing smoke and poisonous gas. The apparatus includes a body configured to include a flux unit which supplies water and a nozzle which is connected to the flux unit and has a narrower width than the flux unit, a frame configured to surround the body and include a suction part for removing smoke, and a heat sensitive unit fixed to seal the nozzle. When the flux unit, nozzle and frame sprays fluid with a certain pressure at high speed through the nozzle, pressure energy of the fluid is changed to velocity energy, and a vacuum state is formed in a suction room at a low pressure due to a fast speed. In order for an operation to be performed as a vacuum ejector for sucking another fluid, the suction part is positioned surrounding the nozzle, and the frame is provided to surround the heat sensitive unit. A negative pressure explained in Bernoulli's theorem is generated to form a vacuum in the space between the nozzle and the mixing chamber, thus enabling the suction of smoke and poisonous gas. The smoke and poisonous gas are mixed with water in the mixing chamber so as to be trapped in the water or dissolved and dispersed in the water. The suction part is formed in the area which encloses the nozzle such that the suction part can operate together with a vacuum ejector. The frame is arranged so as to enclose the heat sensitive unit.
Abstract:
A multi-hole or cluster nozzle having several outlet openings for fluid to be atomized. The central longitudinal axes of at least two of the outlet openings are aligned askew relative to one another, where a distance between the central longitudinal axes of these outlet openings and the main longitudinal axis of the nozzle is initially reduced when seen in the outflow direction, without intersecting the central longitudinal axis, and increases again after passing through a minimum distance. Use for example in nozzles for evaporative cooling or for flue gas cleaning.
Abstract:
A method for atomizing a liquid including providing an atomizer having a liquid supply conduit having an outlet at one end, a gas supply conduit opening into a port in the liquid supply conduit upstream of the outlet, and a means for imparting vibrational energy to the atomizer. In an embodiment, the liquid supply conduit and gas supply conduit are coaxially displaced relative to one another. The method further includes flowing liquid through the liquid supply conduit to the outlet while simultaneously flowing gas through the gas supply conduit, and imparting vibrational energy to the atomizer to atomize the liquid exiting from the outlet. The introduction of gas at the port results in a spray of droplets with improved dimensional properties.
Abstract:
An annular ejector of an annular jet pump is coaxially arranged at a front of a central ejector. The annular ejector includes an annular nozzle, an annular mixing chamber, and an annular mixing duct. The central ejector includes a central nozzle, a central mixing chamber, and a central mixing duct. The annular nozzle is connected with a primary fluid inlet. A primary fluid inlet is in direct connection with the central nozzle arranged at a bottom of the central pipe, and a secondary fluid inlet is connected with a sidewall of the annular mixing chamber.
Abstract:
A shower head (40) has a passageway for a flow of pressurised air from a pressurised air supply, via a Venturi (48) having a convergent portion (46), throat (50) and divergent portion (52), to a shower discharge opening (56), and a passageway (58) for a flow of water from a water supply to a water discharge opening (60) in the Venturi. The Venturi is such that, in use, the general direction of the flow of air is turned through a substantial angle in the Venturi. This folding of the Venturi enables a compact configuration of shower head to be provided.
Abstract:
Systems and methods for energy-saving and water-saving devices are disclosed. In some embodiments, a head assembly is coupled to receive a liquid flow from a liquid supply and a gas flow from a gas supply, wherein the head assembly defines a mixing region configured to receive the liquid flow and the gas flow, and a dispensing portion configured to receive a combined flow from the mixing region. In some implementations, a spray nozzle may sprayably introduce the liquid flow into the mixing region. In other implementations, a plurality of curtain flows may be drawn through apertures into the dispensing portion by the combined flow. In still other implementations, a portion of the combined flow dispensed by the head assembly may be recaptured into the gas flow.
Abstract:
To provide a fluid mixture jet apparatus which jets a fluid mixture of air containing fine washing water particles, to be capable of removing dust containing carbon and the like adhering to a coated surface, a fluid mixture jet apparatus (10) includes a two fluid mixing tank (11) in which flowed air (1) and washing water (3A) containing detergent are uniformed in pressure, an air passageway (12) connecting from the two fluid mixing tank (11), a washing water channel (13A), an ejector part (15) to which the air passageway (12) and the washing water channel (13A) are connected, to form the washing water (3A) into fine washing water particles, and an jet nozzle (16) that jets a fluid mixture (5) of the compressed air (1) and the pure water 3 made into fine water particles at high speed, and the fluid mixture (5) containing the pure water 3 made into fine water particles at high speed, to break the pure water (3) made into fine water particles, so as to remove a small amount of residual contaminants from a coated surface.
Abstract:
A method and apparatus for tempering material is provided. One or more liquids are atomized by at least one sprayer into droplets which are guided towards a surface of a hot material so that at least some of the droplets collide with the surface of the hot material and evaporate, thus removing thermal energy from the surface layer of the hot material. Impact members may be used to further reduce the size of the droplets. The droplets may be guided to the surface by a separate guiding gas flow.
Abstract:
Two-substance nozzle, cluster nozzle with several two-substance nozzles and method for the atomization of fluids by means of a two-substance nozzle.The invention relates to a two-substance nozzle with a nozzle housing, said nozzle housing comprising at least one fluid inlet for fluid that is to be atomized, a second fluid inlet for gaseous fluid, a mixing chamber, a nozzle outlet opening and an annular gap opening surrounding the nozzle outlet opening, whereby, within the nozzle housing, means are provided for generating a film of fluid that is to be atomized on a wall in the mixing chamber, and inlet openings are provided for injecting gaseous fluid into the mixing chamber.In accordance with the invention, the inlet openings and the mixing chamber are aligned and configured in a manner so as to inject the gaseous fluid essentially parallel to the wall in the mixing chamber and to move the stream of gaseous fluid within the mixing chamber essentially parallel past the wall.Use, e.g., for flue gas cleaning.
Abstract:
The invention relates to a process and apparatus for forming a particulate composition, especially a particle glass composition, through the use of shock waves. A nozzle element is utilized having inlets for introduction of cold and heated gas and a delivery tube for introducing molten material. Through the introduction of the cold and heated gases, droplets are formed from a molten stream, a cone-shaped standing shock wave is formed, and shock waves are formed via a modified Hartmann-Sprenger chamber, the shock waves impinging on the droplet stream to break up the larger droplets.