Abstract:
An ultrasound transducer includes: an acoustic matching layer bending with a predetermined curvature; a plurality of piezoelectric elements disposed on an inner face on a side of a curvature center of the acoustic matching layer in such a manner that the plurality of piezoelectric elements bend; a plurality of wirings including respective one ends electrically connected to the plurality of piezoelectric elements, respectively; a substrate to which respective other ends of the plurality of wirings are electrically connected; and a holding member provided on the plurality of wirings at a position partway of the plurality of wirings between the plurality of piezoelectric elements and the substrate, the holding member being configured to hold a pitch of the plurality of wirings so as to be a pitch that is equal to or smaller than a predetermined arrangement pitch of the plurality of piezoelectric elements.
Abstract:
A sensor assembly including one or more capacitive micromachined ultrasonic transducer (CMUT) microarray modules which are provided with a number of individual transducers. The microarray modules are arranged to simulate or orient individual transducers in a hyperbolic paraboloid geometry. The transducers/sensor are arranged in a rectangular or square matrix and are activatable individually, selectively or collectively to emit and received reflected beam signals at a frequency of between about 100 to 170 kHz.
Abstract:
Switchable micromachined transducer arrays are described where a MicroElectroMechanical Systems (MEMS) switch, or relay, is monolithically integrated with a transducer element. In embodiments, the MEMS switch is implemented in the same substrate as the transducer array to implement one or more logic, addressing, or transducer control function. In embodiments, each transducer element of an array is a piezoelectric element coupled to at least one MEMS switch to provide element-level addressing within the array. In certain embodiments the same piezoelectric material employed in the transducer is utilized in the MEMS switch.
Abstract:
An ultrasonic imaging system is described in which a column-row-parallel architecture is provided at the circuit level of an ultrasonic transceiver. The ultrasonic imaging system can include a N×M array of transducer elements and a plurality of transceiver circuits where each transceiver circuit is connected to a corresponding one transducer element of the N×M array of transducer elements. A shared pulser gate driver and a shared VGA is provided for each row and column. Selection logic includes row select, column select, and per-element bit select. Through the column-row-parallel architecture, a variety of aperture configurations can be achieved.
Abstract:
A transducer includes a plurality of elements each including at least one cell structured in such a way that a diaphragm including one of a first electrode and a second electrode disposed facing each other via a space is vibratably supported, bias wiring for supplying a bias voltage to the first electrode to provide a potential difference between the first and the second electrodes, and for electrically connecting the first electrodes of the elements to each other, and signal wiring lines each connected to a different one of the elements. The bias wiring includes a plurality of branch wiring lines to each of which the first electrodes of a part of the elements are connected, a plurality of first common wiring lines for connecting the branch wiring lines to each other, and a second common wiring line for connecting the first common wiring lines to each other.
Abstract:
An apparatus and method associated with amplifying piezoelectric sonic and ultrasonic outputs is presented which provides high power output from piezoelectric devices, especially at high ultrasonic frequencies, in open air, which mitigates or eliminates overheating of the piezoelectric devices when stimulated at or near their peak outputs for extended periods. In addition, the invention provides a means of amplifying a piezoelectric sonic and ultrasonic device if a desired output power exceeds a normal maximum capability of the piezoelectric device.
Abstract:
In order to provide an ultrasonic diagnostic apparatus with a transceiver circuit configuration which has a small number of components and is suitable for miniaturization, an amplifier circuit used for both transmission and reception which can be built in an ultrasonic probe and has a function of adding currents of received signals from plural elements is provided in the ultrasonic diagnostic apparatus. In addition, an analog matrix switch (402) for arbitrarily adding received signals from plural transducers is provided. That is, a transmitted and received signal amplifier circuit is shared by using a transceiver circuit section, which is formed by an FET element serving as a source follower circuit, as a gate-grounded amplifier during a signal reception period. The received signals from the transducers which have been amplified by FET elements can be added for each group of arbitrary elements by the matrix current switch (402) formed by plural FET elements corresponding to the respective transducers.
Abstract:
An ultrasonic diagnostic apparatus for obtaining and displaying a three-dimensional image within a short time by performing three-dimensional scanning in an object with ultrasonic beams at rapid speed. A plurality of small transducer blocks is formed through selective connection on a two-dimensional transducer array provided on an ultrasonic probe. Driving pulse signals generated by a pulse generating circuit are modulated by a frequency modulator. These driving pulse signals respectively having different frequencies are simultaneously provided to the selected small transducer blocks, causing said small transducer blocks to transmit ultrasonic beams from each of them to the interior of the object. Then, waves reflected from the interior of the object are received by each small transducer block. After the echo signals received by each small transducer block are demodulated by a demodulator, these signals are input to a phasing circuit to generate a plurality of received beam signals. The position of the small transducer blocks is moved at each repetition of ultrasonic transmission/repetition. Thus obtained received beam signals are image-processed and made into image data, and thus displayed on a display.
Abstract:
Apparatus and methods for controlling electrostrictive transducer sensitivity in a pulse-echo medical ultrasound system. Certain characteristics of each transducer element are tested after manufacture and recorded on a storage medium. The stored data is then used, along with certain model relations, for monitoring certain operational parameters of the transducer during use, and feedback compensation applied for maintaining the transducer sensitivity substantailly constant. The parameters to be monitored may include the temperature, acoustic pressure, input power, and a figure of merit determined from the dielectric constant and coupling coefficient.
Abstract:
An ultrasonic transducer array, and a method for manufacturing it, having a plurality of transducer elements aligned along an array axis in an imaging plane. Each transducer element includes a piezoelectric layer and one or more acoustic matching layers. The piezoelectric layer has a concave front surface overlayed by a front electrode and a rear surface overlayed by a rear electrode. The shape of each transducer element is selected such that it is mechanically focused into the imaging plane. A backing support holds the plurality of transducer elements in a predetermined relationship along the array axis such that each element is mechanically focused in the imaging plane.