Abstract:
The rail is rolled by the steps of breakdown rolling, reforming rolling, first and second universal rolling, head-wheel rolling and base-wheel rolling in that order. The reforming rolling is performed using a pair of horizontal rolls provided with a reforming pass and a head-wheel pass and a vertical roll adapted to reduce the base of the rail, with the paired horizontal rolls, together with said vertical roll, shifted and set in such a position where the reforming pass matches the pass line of the first universal rolling pass. The head-wheel rolling is performed using the same paired horizontal rolls and a vertical roll adapted to reduce the head of the rail, with the paired horizontal rolls, together with said vertical roll, shifted and set in such a position where the head-wheel pass matches the pass line of the second universal rolling pass. The rail rolling apparatus comprises a breakdown stand, a sizing head-wheel stand having a pair of horizontal rolls provided with a reforming pass and a head-wheel pass, a vertical roll adapted to reduce the base of the rail, a vertical roll adapted to reduce the head of the rail, and mechanism for shifting the rolls, a universal stand, and a base-wheel rolling stand.
Abstract:
A rolling method and apparatus for producing such shaped products as asymmetrical H-shaped steel products having flanges of different thicknesses by using the universal rolling mill having a pair of vertical rolls, one having greater diameter than the other, thereby making equal or nearly equal the projected lengths of biting contact of these vertical rolls on the rolled material.
Abstract:
New 6xxx aluminum alloys having an improved combination of properties are disclosed. Generally, the new 6xxx aluminum alloys contain 1.00-1.45 wt. % Si, 0.32-0.51 wt. % Mg, wherein a ratio of wt. % Si to wt. % Mg is in the range of from 2.0:1 (Si:Mg) to 4.5:1 (Si:Mg), 0.12-0.44 wt. % Cu, 0.08-0.19 wt. % Fe, 0.02-0.30 wt. % Mn, 0.01-0.06 wt. % Cr, 0.01-0.14 wt. % Ti, and ≦0.25 wt. % Zn, the balance being aluminum and impurities, wherein the aluminum alloy includes ≦0.05 wt. % of any one impurity, and wherein the aluminum alloy includes ≦0.15 in total of all impurities.
Abstract:
The invention relates to the field of pressure treatment of metals and can be used in the production of a cold-rolled strip. The problem addressed by the invention is that of being able to exclude a pickling operation in the preparation of semifinished rolled stock for cold rolling. Complete de-scaling of the surface of the semifinished rolled stock without using picking is provided by carrying out preliminary cold rolling of the semifinished rolled stock in rolling-mill rolls according to prescribed values for compression and for the ratio of compression to deformation zone length. The rolling can be carried out in one of two consecutively mounted mills.
Abstract:
A closed loop temperature control system for use in tandem rolling mills. The closed loop temperature control system uses dynamic information about the temperature of the material moving through the mill to adjust the work rolls to adjust the amount of thickness reduction between the stands to control the temperature of the material as it moves through the mill. In one embodiment, the control system is configured to eliminate or reduce temperature differences across the length of the material as the material moves through acceleration, steady state, and deceleration stages of the rolling process.
Abstract:
A method for manufacturing the high strength steel sheet having excellent formability includes hot-rolling a steel slab having a chemical composition containing, by mass %, C: 0.03% or more and 0.35% or less, Si: 0.5% or more and 3.0% or less, Mn: 3.5% or more and 10.0% or less, P: 0.1% or less, S: 0.01% or less, N: 0.008% or less and the balance comprising Fe and inevitable impurities, coiling the hot-rolled steel sheet at a temperature range of the Ar1 transformation point to the Ar1 transformation point+(the Ar3 transformation point−the Ar1 transformation point)/2, cooling the coiled steel sheet down to 200° C. or lower, heating and holding the cooled steel sheet at a temperature range of the Ac1 transformation point−200° C. to the Ac1 transformation point for 30 minutes or more, pickling the heated steel sheet, cold-rolling the pickled steel sheet under the condition that the rolling reduction is 20% or more, and heating and holding the cold-rolled steel sheet at a temperature range of the Ac1 transformation point to the Ac1 transformation point+(the Ac3 transformation point−the Ac1 transformation point)/2 for 30 seconds or more.
Abstract:
Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.
Abstract:
A rolling train for rolling a strip has a number of rolling stands and a coiler. The rolling stands have work and backing rolls. Data of the strip are fed to a control device of the rolling train which determines individual pass reductions for the rolling stands based on the data. It controls the main rolling stands and the coiler such that the strip is rolled in the main rolling stands according to the individual pass reductions and then coiled up. It determines the individual pass reductions such that they are zero and controls the rolling stand arranged directly upstream of the coiler such that—with respect to this main rolling stand—the tension in the strip on the outlet side is less than on the inlet side, but the strip runs through this rolling stand without undergoing any forming, at least on one side.
Abstract:
A method of fabricating a superplastically formable strip or a superplastically formable foil from TiAl6V4 with a thickness of no more than 0.9 mm, preferably less than or equal to 0.5 mm, comprises the steps: a) hot rolling a sheet metal made of TiAl6V4; b) thermal pre-treatment of the hot-rolled sheet metal at a temperature between 650 and 850° C.; and c) cold rolling the hot-rolled and thermally pre-treated sheet metal at a forming rate of at least 30%, wherein the forming rate per single pass amounts to between 1 and 15%, to form a strip or a foil with a thickness of no more than 0.9 mm, wherein the cold-rolled strip or the cold-rolled foil is not annealed.
Abstract:
A rolling system has a rolling mill a rod workpiece, a wire block comprised of at least two roll stands downstream of the rolling mill, and a calibrating block comprised of three roll stands spaced apart in the direction downstream of the wire block. The workpiece is passed in the direction downstream in the direction from the rolling mill through the wire block and thereafter through the calibrating block with thickness reduction in each block. The gaps of the stands of the calibrating block are set at a fixed spacing and not varied during a rolling operation. A sensor measures the thickness of the workpiece upstream of the calibrating block, and gaps of the roll stands of the rolling mill or wire block are adjusted in accordance with the measured thickness such that the workpiece has a predetermined thickness on entering the calibrating block.