Abstract:
Methods for forming discrete deformations in web materials are disclosed. In some embodiments, the method involves feeding a web into an apparatus having nips that are formed between intermeshing rolls. The apparatus may be in the form of nested or other arrangements of multiple rolls, in which the web is maintained in substantial contact with at least one of the rolls throughout the process, and at least two of the rolls define two or more nips thereon with other rolls. In some embodiments, rolls can be used to expose a different side of the web for a subsequent deformation step. In these or other embodiments, the rolls can be used to transfer the web between rolls in such a manner that it may offset the rolls and/or web so that subsequent deformations are formed at a different cross-machine direction location than prior deformations.
Abstract:
A desirable embossing of a fibrous web (6) as dry laid on a forming sheet (2) is effected by the web (6) in a still unglued condition passing a pair of embossing producing rollers (18, 20) carried on or by a pressure resistant support sheet (16) as also passing between the rollers. Problems as to web fractures are hereby widely eliminated.
Abstract:
A staple-less binding unit including a pair of upper and lower teeth binds a sheet bundle which is discharged to an intermediate processing tray by a sheet discharge portion and whose one edge abuts against a rear edge stopper. A control portion switches a binding mode of the staple-less binding unit that implements the binding process on the sheet bundle in a first binding mode of binding the sheet bundle without any staple such that the pair of upper and lower teeth bite across an edge of the sheet bundle and in a second binding mode of binding the sheet bundle without any staple such that the pair of upper and lower teeth do not bite across any edge of the sheet bundle.
Abstract:
A binding member is provided and includes: upper teeth having a tooth form configured to form a convex-concave portion on a recording material bundle; and lower teeth having a tooth form configured to form the convex-concave portion on the recording material bundle, and paired with the upper teeth. At least one of the upper teeth and the lower teeth includes: a first tooth row having a first tooth form having a first shape suitable for binding a first binding number of sheets; and a second tooth row having a second tooth form having a second shape suitable for binding a second binding number of sheets which is smaller than the first binding number of sheets.
Abstract:
A sheet processing apparatus includes a first binding unit configured to bind a sheet bundle; a second binding unit with greater number of bindable sheets than number of bindable sheets of the first binding unit; and a number-of-sheets determining unit configured to determine whether number of to-be-bound sheets exceeds the number of bindable sheets of the first binding unit. The first binding unit moves to a binding position, and if the number-of-sheets determining unit determines that the number of to-be-bound sheets exceeds the number of bindable sheets of the first binding unit, the first binding unit moves away from the binding position. When the number-of-sheets determining unit determines that the number of to-be-bound sheets exceeds the number of bindable sheets of the first binding unit, the second binding unit moves to the binding position.