Abstract:
A hollow body which has a flexible envelope and can be pressurized from inside by a pressure medium, the envelope consisting of a foam material, preferably neoprene, with closed cavities whose volume can be altered by changes in the pressure medium to correspondingly alter the thermal insulation capacity of the envelope. A coating may be applied to the foam material on the outside of the hollow body to enhance the stability of its shape when inflated.
Abstract:
The invention relates to a multistrip insert, usually comprising three strips side-by-side, for a pneumatic tire, said insert being composed at least in part of a closed cell resilient material constructed and dimensioned to fit ring-like about a wheel rim within the tire. The insert normally fills less than the whole internal cross-sectional volume of the tire but can support the tire against total collapse when deflated. In use, should the tire become deflated, the insert expands to fill or substantially so the internal volume of the tire due to the increase in temperature caused by the increased flexing of the tire and insert. The consequent return to or towards the normal operative tire shape results in the tire subsequently running at or near normal running temperature.
Abstract:
A pneumatic tire having a "run-flat" capability, is disclosed. The tire is in the form of a substantially toroidally shaped carcass having a pair of bead-reinforced sidewall regions and a crown region annularly bridging the sidewall regions. Internally of the carcass, there is provided an expandable nail-deflector for deflecting a nail that punctures, for example, the crown region. The nail deflector has a releasably constrained normal condition when the crown region is puncture-free that is annularly spaced from the interior of the crown region, and is circumferentially self-expandable into engagement with the interior of the crown region upon puncture of the latter by a nail to deflect such nail harmlessly away from its path of entry.
Abstract:
The present invention relates to an explosion-proof tire, comprising a safety airbag, trigger sensors and a safety switch, wherein the safety airbag is arranged between a tire and a hub; the hub is provided with grooves; trigger devices of the safety airbag are arranged in the grooves; one end of each trigger sensor sticks into the tire; and the other end thereof is connected with a trigger device. The safety switch is arranged on the valve stem of the tire; and positive and negative electrodes on the valve stem are each connected with a trigger device.The safety switch disclosed by the present invention ensures that the safety airbag will not be triggered accidentally, and when a vehicle tire bursts, the safety airbag provided can instantly provide enough support force to ensure traffic safety.
Abstract:
A system for allowing a pneumatic tire supported on a wheel rim of a vehicle to continue in operation after rupture of the tire. The system includes an air bag container which divides the interior tire volume into a radial outer chamber providing normal pressure for inflation of the tire and a radial interior chamber, within the air bag, which is inflated to a substantially higher pressure. The container is intended to rupture when the tire is deflated by a puncture or the like allowing the higher pressure air bag to escape from its container and fill the entire tire volume at a normal operating pressure.
Abstract:
A system for allowing vehicles equipped with pneumatic tires to continue operating after a tire failure which would normally cause deflation of the tire employs one or more airbags stored in deflated configuration either about the exterior surface of the rim supporting the pneumatic tire or externally of the tire. The system further includes a container for compressed gases. A sensor connected to the inflated tire to detect sudden deflation releases the compressed gases so as to inflate the airbag to either support the tire or provide an exterior running surface adjacent to the deflated tire.
Abstract:
It is to solve problems in a safety tire in which hollow particles also referred to as the foamable compositions are filled in the hollow ring-shaped partition wall and to provide a safety tire having a partition wall structure capable of sufficiently developing the function of the hollow particles.In a safety tire comprising a tire/approved rim assembly constructed by assembling the tire onto the approved rim, a hollow ring-shaped partition wall disposed inside the assembly to define a chamber extending in a circumferential direction along the rim, and thermally expandable hollow particles filled in the chamber and each consisting of a continuous phase of a resin and a closed cell(s), wherein the partition wall is provided with a filter selectively passing only a gas emitted when the hollow particles are thermally expanded.
Abstract:
An airbag device for a vehicle tire capable of stabilizing the vehicle timely when the tire is exploding or being punctured suddenly to avoid potential accidents and to ensure driving comfort. The airbag device comprises a resilient outer ring installed between the tire and the wheel hub, and an inner ring serving to support the resilient outer ring. The resilient outer ring and the inner ring are compressed between the tire and the wheel hub under normal tire air pressure, and a space serving to increase driving comfortability and keep the outer ring from contacting the inner surface of the tire tread is designed between the resilient outer ring and the inner surface of the tire tread. When the tire is exploding or the air pressure of the tire is lost, the resilient outer ring is capable of bouncing instantly to support the weight of the vehicle.
Abstract:
A rubber-fiber composite material of the present invention comprises a non-woven fabric and a rubber which coats the non-woven fabric. At least a part of the non-woven fabric is made of an organic fiber having a single fiber diameter of 10 to 35 μm, a fiber length of 30 to 100 mm and a tensile modulus of 50 GPa or higher. By the use of the non-woven fabric at least a part of which is made of the organic fiber having the above properties, a sufficient impregnation of rubber into the inside of the non-woven fabric is ensured to enable the production of the rubber-fiber composite material having a high stiffness. Using the rubber-fiber composite material of the present invention as the reinforcing material for rubber articles, the resultant rubber articles have enhanced stiffness, improved durability and reduced weight.