Abstract:
Vehicles such as unmanned air vehicles that are capable of movement from an open, flight configuration to an enclosed configuration in which all major flight components can be protected by an outer shell are disclosed. In the enclosed configuration, the vehicles can take on standard geometric shapes such as a rectangular prism, sphere, cylinder, or another shape, so as to not be recognizable as an unmanned air vehicle. Embodiments of vehicles can also include interchangeable and/or wireless motor arms, motor arms which are electrically connected to the remainder of the vehicle only when in an open configuration, remote controllers removably attached to the remainder of the vehicle, and clip or other attachment mechanisms for attachment to objects such as backpacks.
Abstract:
A ducted fan UAV that can be collapsed into a stowed configuration and then deployed for flight by, for example, inflating the duct to a deployed configuration. The UAV includes a plurality of rotor blades, a plurality of struts and a plurality of control vanes each being pivotally mounted to a center body by a hinge so that the rotor blades, the struts and the control vanes can be folded into the stowed configuration to be substantially parallel to the center body and be unfolded into the deployed configuration to be substantially perpendicular to the center body. The UAV also includes a pressurization system providing a pressurant to a chamber within the duct so as to inflate the duct and cause the struts, the rotor blades and the control vanes to move from the stowed configuration to the deployed configuration.
Abstract:
In an aspect, an apparatus includes a hovering unmanned aerial vehicle (HUAV). The HUAV includes an arm assembly configured to support a propeller in such a way that propeller drag of the propeller is decoupled from yaw torque requirements associated with the hovering unmanned aerial vehicle. In another aspect, an apparatus includes an HUAV that has an arm assembly that is field-foldable relative to the HUAV between a flight-ready state and a folded state. In another aspect, an apparatus includes an HUAV having an arm assembly that is keyed in such a way as to facilitate field-assembly relative to the HUAV.
Abstract:
This document describes a system and method through which unmanned aerial vehicles (UAVs) can be docked, with a device that can secure the UAVs, and information can be transmitted to and from such UAVs. The UAVs are secured through the use of magnetic fields. The system also includes a means for transmitting information between the docking system itself, the UAV(s) and/or between the docking system and a command center, which may be a notable distance from the docking system, or among the docking system, the UAV(s) and the command center.
Abstract:
According to an aspect, a distributed package transport system includes unmanned aerial vehicles (UAVs), each of which is configured to transport packages within a geographic area and along a travel route. The system also includes UAV enclosures dispersed within the geographic area. The UAV enclosures include a number of cells, each of which provides a receptacle to temporarily house a UAV. At least one of the UAV enclosures is dynamically assigned to a location within the geographic area. Each of the UAV enclosures includes a computer processor and communication network interface and, for each of the UAVs in transit, the UAV enclosures communicate information specifying an origination point, drop off point, and return point amongst each other and coordinate to define, based on locations of the UAV enclosures and capacities of the UAV enclosures, a refined travel route including a subset of the UAV enclosures to serve as hops.
Abstract:
Disclosed are embodiments of a rotary-wing drone that includes a drone body, linking arms that extend from the drone body with a propulsion unit located on a distal end of the linking arms, and at least two drone supports extending from the drone body. The drone supports may include a lifting means so that the drone supports are able to be lifted when the drone flies, where the drone supports come into alignment with the linking arms. The drone supports may form the leading edge of the rear linking arms and/or the trailing edge of the front linking arms of the drone.
Abstract:
Various systems, methods, for unmanned aerial vehicles (UAV) are disclosed. In one aspect, UAVs operation in an area may be managed and organized by UAV corridors, which can be defined ways for the operation and movement of UAVs. UAV corridors may be supported by infrastructures and/or systems supported UAVs operations. Support infrastructures may include support systems such as resupply stations and landing pads. Support systems may include communication UAVs and/or stations for providing communications and/or other services, such as aerial traffic services, to UAV with limited communication capabilities. Further support systems may include flight management services for guiding UAVs with limited navigation capabilities as well as tracking and/or supporting unknown or malfunctioning UAVs.
Abstract:
Disclosed is a configuration to control automatic return of an aerial vehicle. The configuration stores a return location in a storage device of the aerial vehicle. The return location may correspond to a location where the aerial vehicle is to return. One or more sensors of the aerial vehicle are monitored during flight for detection of a predefined condition. When a predetermined condition is met a return path program may be loaded for execution to provide a return flight path for the aerial vehicle to automatically navigate to the return location.
Abstract:
Launch-controlled unmanned aerial vehicles, and associated systems and methods are disclosed. A computer-implemented method for operating an unmanned aerial vehicle in a representative embodiment includes detecting at least one parameter of a motion of the UAV as a user releases the UAV for flight. Based at least in part on the at least the one detected parameter, the method can further include establishing a flight path for the UAV, and directing the UAV to fly the flight path.
Abstract:
A rotary wing aircraft apparatus has arms extending from a body, and a rotor assembly attached to an end of each arm. Each rotor assembly has a rotor blade releasably attached by a lock mechanism. A clockwise rotor blade is releasably attached to a first rotor assembly by engagement in a clockwise lock mechanism, and a counterclockwise rotor blade is releasably attached to a second rotor assembly by engagement in a counterclockwise lock mechanism. The clockwise rotor blade is engageable only with the clockwise lock mechanism and the counterclockwise rotor blade is engageable only with the counterclockwise lock mechanism and cannot be engaged in the clockwise lock mechanism. A leg extends down from each rotor assembly to support the apparatus on the ground.