Abstract:
The invention relates to a method for the production of a mechanical part, comprising the following successive steps: casting of a billet of aluminium alloy with a composition (in weight %) of 0.4-3.0 Si; 0.6-2.0 Mg; 0.20-1.0 Cu; 0.15-1.8 Fe; Mn
Abstract:
Anodic films that provide improved corrosion resistance to high performance aluminum alloys, and methods for forming the same, are described. According to some embodiments, the anodic films have a dense porous layer and a thickened barrier layer. The porous layer can act as a cosmetic portion of the anodic film and have pores that have a colorant infused therein. The thickened barrier layer can distribute defects within the anodic film associated with alloying elements of the high performance aluminum alloy in a larger non-porous film compared to conventional anodic films, thereby lessening the chance of corrosion inducing agents of reaching the high performance aluminum alloy. The anodic films have superior scratch and chemical resistance, as well as enhanced cosmetic aspects, well suited for consumer products, such as housings for electronic products.
Abstract:
A process of forming and the resulting nano-pitted metal substrate that serves both as patterns to grow nanostructured materials and as current collectors for the resulting nanostructured material is disclosed herein. The nano-pitted substrate can be fabricated from any suitable conductive material that allows nanostructured electrodes to be grown directly on the substrate.
Abstract:
Methods of forming anodic oxide coatings on high strength aluminum alloys are described. Methods involve preventing or reducing the formation of interface-weakening species, such as zinc-sulfur compounds, at an interface between an anodic oxide coating and underlying aluminum alloy substrate during anodizing. In some embodiments, a micro-alloying element is added in very small amounts to an aluminum alloy substrate to prevent enrichment of zinc at the anodic oxide and substrate interface, thereby reducing or preventing formation of the zinc-sulfur interface-weakening species. In some embodiments, a sulfur-scavenging species is added to an aluminum alloy substrate to prevent sulfur from a sulfuric acid anodizing bath from binding with zinc and forming the zinc-sulfur interface-weakening species at the anodic oxide and substrate interface. In some embodiments, a micro-alloying element and a sulfur-scavenging species are added to an aluminum alloy substrate. Resultant anodic oxide coatings have minimal or no discoloration.
Abstract:
A method for producing a multi-layer anodic coating on a metal is described. The method comprises the steps of (i) placing the metal in a first electrolytic solution and applying a current to form a first anodic layer having a barrier region; (ii) reducing the applied current to cause a reduction in thickness of the barrier region; and (iii) placing the metal in a second electrolytic solution and applying a current to form a second anodic layer.
Abstract:
The disclosure relates to a chamber component or a method for fabricating a chamber component for use in a plasma processing chamber apparatus. In one embodiment, a chamber component, for use in a plasma processing apparatus, includes an aluminum body having an anodized coating disposed on the aluminum body formed from a neutral electrolyte solution, wherein the anodized coating has a film density higher than 3.1 g/cm−2.
Abstract translation:本发明涉及室等离子体处理室装置中使用的腔室部件或制造室部件的方法。 在一个实施例中,用于等离子体处理装置的腔室部件包括铝本体,其具有设置在由中性电解质溶液形成的铝体上的阳极氧化涂层,其中阳极氧化涂层的膜密度高于3.1g / cm -2。
Abstract:
Metal products having improved properties and processes for preparing the metal products are provided. The present disclosure provides for a metal product comprising a metal surface, an oxide layer and a glass layer. The glass layer is provided by coating a stable aqueous silicate or borosilicate solution onto the metal surface and curing the aqueous solution to produce a glass layer. The metal products have surface characteristics that outperform all anodized metal surfaces.
Abstract:
Embodiments of golf club heads and methods to manufacture such a golf club heads are generally described herein. In some embodiments, the golf club head may include a ball-striking face and a protective aluminum oxide layer coupled to the ball-striking face of the golf club head. The protective aluminum oxide layer is associated with a hardness that is greater than that of the ball-striking face. In further embodiments, golf club heads may include a top portion and at least one of a plurality of interchangeable alignment indicia coupled thereto, which are configured to guide the golf club head relative to a golf ball.
Abstract:
An internal combustion engine having an anodic oxidation coating formed on at least a part of a wall surface that faces a combustion chamber, wherein the anodic oxidation coating has voids and nano-holes smaller than the voids; at least part of the voids are sealed with a sealant derived by converting a sealing agent; and at least a part of the nano-holes are not sealed.
Abstract:
Embodiments of the present disclosure are directed to a circuit board. The circuit board comprises: an aluminum-based substrate; an alumina layer formed on at least one surface of the aluminum-based substrate; and a circuit layer formed on the alumina layer. The alumina layer comprises alumina and an element selected from a group consisting of chromium, nickel, a rare earth metal, and a combination thereof.