Abstract:
The metal core used for reinforcing tire beads is constituted by a plurality of coils of wire (16), (17), (18), axially arranged side-by-side and radially superimposed, in which the wire has a cross-section of modular shape with two equal and parallel opposite sides (1), (2), the profiles (15) of the corresponding ends of the opposite sides having a distance, from the axis of said pair of sides, whose value varies from one side to the other, said variation comprising at least one symmetrical deviation along the development of its cross-sectional profile.
Abstract:
A stabilized parallel wire strand is made by drawing a plurality of wires through a forming die from a plurality of rotatable payoffs each of which is arranged to rotate in a direction opposite to at least one other pay-off while clamping the wires at their leading ends to prevent rotation of the wires about their axes and finally binding the wires together with a resilient binding at intervals along the length of the strand. After binding the strand can be immediately reeled by actively or passively rotating the strand periodically about its longitudinal axis in alternate clockwise and counterclockwise directions as it passes onto a reel.
Abstract:
The present invention relates to synthetic cables comprising core and splicing threads with high modulus threads, wherein the ends of the cable comprise looped or eyelet splice-type termination ends (1), and wherein each leg of the parallel splicing threads (13, 13′) is connected to parallel core threads (21) at an interpenetration region (12). The method comprises individually connecting each leg of the splicing threads (13) with a positive splice to a core thread(s) (21) of the beginning end of the cable (2); looping; straining all the threads and applying a normal compression force at the interpenetration region (12); applying a protective element(s) (32) along the cable and further individually connecting each leg of the splicing threads (21) to form a negative splice to a core thread(s) (21) of the final end of the cable core (2); and looping, straining and applying a normal compression force (12) on the negative splice at the interpenetration region.
Abstract:
The present invention provides a pneumatic tire having a bead core embedded in a bead portion of the tire, the bead core being constituted of a strand as a rubber-coated single bead wire wound around the bead portion to be juxtaposed in plural columns in the axial direction and stacked in plural rows in the radial direction to form a torus structure, characterized in that: the bead core as the torus structure is constituted of two columns of the bead wire juxtaposed in the axial direction; a winding-start end and a winding-terminal end of the bead wire are situated at the outermost rows in the radial direction of the corresponding columns thereof, respectively; and at least one of an interval between the winding-start end and an inner peripheral layer adjacent to the winding-start end of the bead wire and an interval between the winding-terminal end and an inner peripheral layer adjacent to the winding-terminal end of the bead wire is larger than any other intervals between two adjacent bead wires of the bead core.
Abstract:
A rubber-steel cord composite is provided having nonlinear physical properties even in a rubber characterized by incompressive properties after vulcanization, and hence the rubber-steel cord composite can show low rigidity and flexible properties in a low-strain region and, on the other hand, can show high rigidity in a high-strain region. The rubber-steel cord composite is provided by bundling steel linear objects 1 subjected to spiral shape forming at substantially identical pitches in an approximately identical phase without twisting, the steel cord being embedded in rubber.
Abstract:
An object of the present invention is to improve durability of a bead portion of a tire by optimizing a sectional shape and arrangement of a bead wire(s). The pneumatic tire comprises: a pair of bead portions having bead cores embedded therein, each bead core being constituted of plural bead wires extending in the tire circumferential direction; a pair of side wall portions extending from the bead portions on the outer side in the tire radial direction; a tread portion extending over the respective sidewall portions; and a carcass extending in a toroidal shape across the aforementioned portions and having respective end portions being turned up around the bead cores, wherein the bead wires each have complementary shape portions in a section in the tire widthwise direction, by which shape portions adjacent bead wires are complementarily engageable with each other.
Abstract:
A reinforcement for a building works structure comprising an assembly of solid wires. The wires are mutually parallel to form a bundle and the reinforcement comprises a sheath made of plastic material enclosing the bundle and providing it with cohesion.
Abstract:
A metallic cord has (a) a core composed of two filaments either parallel or intertwisted with each other, (b) a single filament surrounding the core and (c) a sheath of nine filaments surrounding the core and single filament. Preferably, the diameter of each filament ranges from about 0.15 to 0.4 mm. The cord may reinforce elastomeric articles such as tires, belts and hoses and preferably is used in a belt ply or carcass ply of a pneumatic tire.
Abstract:
A reinforcing strip, and method of making same, specifically adapted for use in reinforcing plies in the belt of rubber tires. The strip comprises a number, preferably 4 to 7, of parallel wires, tightly bound together by a wrapping wire or a binder. This strip form allows to combine the advantages of steel strip, i.e. high lateral and low radial stiffness and thinner piles, with those of conventional steel cord, i.e. high tensile strength and fatigure resistance.
Abstract:
A metallic cable (10) suitable for reinforcing elastomeric articles comprises two or more substantially identical helical formed bare filaments (11,12,13) nested together and secured to one another by axially spaced apart applications of an adhesive substance.