Abstract:
A drive mechanism is provided for a door operator, comprising a drive member and a driven member. The drive member includes a protrusion, the edges of the protrusion forming first and second driving surfaces which define a free space of at least about 90° there between. The driven member includes a protrusion, the sides of the protrusion form a first and a second driven surface, respectively. The drive member is adapted to be operably connected to between a motor assembly for rotating the drive member and a door closer assembly rotating with the driven member. The drive member and the driven member are disposed for relative rotation in substantially the same plane such that the driven member protrusion moves in the free space defined by the driving surfaces of the drive member protrusion. Rotation of the drive member from a first angular orientation to a second angular orientation in a direction toward an adjacent driven surface causes rotation of the driven member for powered opening of the door from the closed position to the open position. The driven member protrusion moves in the free space without engaging the protrusion surfaces when the door is opened manually from the closed position and allowed to close.
Abstract:
A rain sensor arrangement for an operator for a window having a frame, a sash pivotable with respect to the frame, and a pane mounted in the sash, wherein the operator is adapted for pivoting the sash between a closed and an open position and vice versa, and is controlled via control circuitry responsive to input signals from at least a rain sensor. The rain sensor has at least one sensing area arranged so as to be protected against rain by the window, when the sash is in the closed position.
Abstract:
A drive mechanism is provided for a door operator, comprising a drive member and a driven member. The drive member includes a protrusion, the edges of the protrusion forming first and second driving surfaces which define a free space of at least about 90° there between. The driven member includes a protrusion, the sides of the protrusion form a first and a second driven surface, respectively. The drive member is adapted to be operably connected to between a motor assembly for rotating the drive member and a door closer assembly rotating with the driven member. The drive member and the driven member are disposed for relative rotation in substantially the same plane such that the driven member protrusion moves in the free space defined by the driving surfaces of the drive member protrusion. Rotation of the drive member from a first angular orientation to a second angular orientation in a direction toward an adjacent driven surface causes rotation of the driven member for powered opening of the door from the closed position to the open position. The driven member protrusion moves in the free space without engaging the protrusion surfaces when the door is opened manually from the closed position and allowed to close.
Abstract:
A folding leaf gate comprising a post hung section hingedly attachable to a gate post and at least one leaf hung section hingedly connected in series with the post hung section by means of one or more section hinges, wherein the folding leaf gate additionally includes a rotating device associated with the or each leaf hung section and sharing a common axis of rotation with the or each section hinge and secured in a static relationship to a leaf hung section whereby rotation of the or each rotating device causes rotation of a leaf hung section about the or each section hinge, and one or more translating devices engaging the or each rotating devices, the one or more translating device being configured, when in use, to translate rotational motion of the post hung section about a gate post to rotation of the one or more rotating devices whereby simultaneously to open a gateway closed by the folding leaf gate and fold the folding leaf gate in two or more.
Abstract:
A security gate operating system and method are disclosed, which may comprise a security gate capable of motion between a closed position and an open position; a drive mechanism attached to the security gate and adapted to provide a driving force to the security gate to move the security gate between the closed position and the open position; and electrical drive motor having a drive shaft connected directly to the drive mechanism without a reduction gear between the drive motor and the drive mechanism. The method and system may also comprise the drive motor being a reluctance motor including a switched reluctance motor, and including also a three phase switched reluctance motor. The method and system may also comprise a drive chain operatively connected to the security gate; and a drive sprocket attached directly to the shaft of the drive motor, with the drive sprocket in operative connection to the drive chain. The method and system may also comprise at least one drive arm directly connected to the drive motor shaft and operatively connected to the security gate.
Abstract:
A drive unit for a power operated vehicle closure has a track, a guide moveable along the track, a link attached to the guide at one end and adapted to be attached to the vehicle closure at the opposite end, and a motor assembly for moving the guide along the track. The motor assembly has an electric motor and a speed reducer driven by the electric motor that has a first stage and a second stage. The first stage includes a belt drive and the second stage is a spur gear set. Alternatively the first stage is a worm gear and a mating helical gear. The worm gear preferably has a high lead angle and a high number of leads. The speed of the electric motor is reduced to about 1000 rpm or less in the first stage permitting the use of spur gears in the second stage while retaining quiet operation.
Abstract:
A security gate operating system and method are disclosed, which may comprise a security gate capable of motion between a closed position and an open position; a drive mechanism attached to the security gate and adapted to provide a driving force to the security gate to move the security gate between the closed position and the open position; an electrical drive motor having a drive shaft connected directly to the drive mechanism without a reduction gear between the drive motor and the drive mechanism. The method and system may also comprise the drive motor being a reluctance motor including a switched reluctance motor, and including also a three phase switched reluctance motor. The method and system may also comprise a drive chain operatively connected to the security gate; and a drive sprocket attached directly to the shaft of the drive motor, with the drive sprocket in operative connection to the drive chain. The method and system may also comprise at least one drive arm directly connected to the drive motor shaft and operatively connected to the security gate.
Abstract:
A power operating system for opening and closing a vehicle liftgate has a pair of drive units supported on the vehicle roof and connected to the liftgate for opening and closing the liftgate. Each drive unit includes a bracket that is secured to the vehicle body for supporting several parts including a reversible electric motor, a gear unit and a track. The electric motor drives a segmented drive linkage inside the track via a gear reduction unit and a sprocket. The segmented drive linkage includes an elongated arcuate link arm that slides in an arcuate track portion of the track and a power roller chain that is stored in a storage track portion when the liftgate is closed. The outboard end of the link arm is pivotally connected to the liftgate to open and close the liftgate as the link arm is extended and retracted by the power roller chain.
Abstract:
A gate opening and closing apparatus for moving a gate between a gate closed position which covers an access opening and a gate opened position. The apparatus comprises an electric motor for driving the gate between the open position and the closed position. A connecting arrangement connects the electric motor to the gate in order to enable powered movement of the gate between the gate opened and gate closed positions. A control unit in the form of a microprocessor control unit is operatively connected to the electric motor for control of the same and hence control of the movement of the gate. The gate normally remains unlocked at the closed position and is only locked when a force is applied to the gate tending to move same to the open position. In one embodiment, a positive locking mechanism, such as a solenoid lock may be provided and which is automatically locked when an opening force is applied to the gate. In another embodiment, the gate is not positively locked and the electric motor applies a closing force to the gate to overcome any effort of an opening movement. The gate opening and closing mechanism is uniquely constructed in that there is no gear box which would otherwise preclude a manual opening of the gate in the event of emergency.
Abstract:
A motorized window operator for opening and closing a window having a mechanical drive system including a rotatable drive axle. A housing contains a motor which is in operative engagement with a gear train having an output gear. The output gear is engageable with an engagement means mounted upon the drive axle of the window. For engaging the output gear train with the engagement means, operation of the motor will rotate the drive axle to either open or close the window according to desire. The gear train is dissengageable from the engagement means which at the same time dissengages power to the motor. The drive axle can then be manually operated.