Abstract:
A pump (100) includes a pump block (102) including a heater (140), a middle block member (120) and an upper block member (122). Cylinder sleeves (130) are disposed between the middle and upper block members, and a piston assembly (160) is disposed in the block with pistons (162) reciprocatingly disposed in the cylinder sleeves. A drive motor (90) drives a twin gear assembly (170) and slave gears (168) to drive the pistons. Headers (104, 105) channel fluid from an external source to the cylinder sleeves, and from the cylinder sleeves to the heater. The heater includes a plurality of heaters such as cartridge heaters (150) that heat the received fluid. In the preferred device, A-side and B-side component are simultaneously pumped. The heater includes A-side and B-side flow paths for heating the components. The pressurized fluid(s) is dispensed through outlets (108, 110).
Abstract:
A linear compressor control apparatus including a position detecting unit to detect the position of a piston and a compensation unit to compensate for output distortion of the position sensor. The compensation unit compensates for output distortion of the position sensor, caused by internal temperature of the linear compressor and load variation. Further, the compensation unit separates a high frequency signal and a DC signal from the output of the position detecting unit, and simultaneously performs position and temperature detecting operations using the separated high frequency signal and the DC signal.
Abstract:
A hermetic electric compressor includes a motor unit having a stator coil and a compressor unit driven by the motor unit for compressing refrigerant gas. A temperature sensor is provided at the stator coil for monitoring a temperature of the stator coil. A control unit is further provided to control a rotational frequency or speed of the motor unit via the stator coil depending on the monitored temperature of the stator coil. The temperature sensor and the control unit are connected via a shielded cable or a twisted pair. The shielded cable or the twisted pair may be grounded via a capacitor. Further, a thermostat may also be provided at the stator coil and connected in series to the temperature sensor.
Abstract:
A pump includes a pump housing, an inlet, an outlet, a rotatable eccentric, a deformable element between housing and eccentric and a delivery channel from inlet to outlet formed by the deformable element and the housing. The deformable element is pressed against the housing in sections by the eccentric forming a movable seal of the channel and a closed volume in the channel being movable along the channel from inlet to outlet to pump the liquid by rotating the eccentric. A method for operating the pump includes a) setting a liquid quantity to be pumped, b) determining a temperature of the deformable element, c) determining a parameter considering the temperature from step b), the parameter representing a dependence between movement of the eccentric and pump capacity and d) pumping the liquid quantity set in step a) by adapting an operating mode of the pump considering the parameter from step c).
Abstract:
A compressor may include a shell, a compression mechanism, first and second temperature sensors, and a control module. The shell may define a lubricant sump. The compression mechanism may be disposed within the shell and may be operable to compress a working fluid. The first temperature sensor may be at least partially disposed within the shell at a first position. The second temperature sensor may be at least partially disposed within the shell at a second position that is vertically higher than the first position. The control module may be in communication with the first and second temperature sensors and the pressure sensor and may determine whether a liquid level in the lubricant sump is below a predetermined level based on data received from the first and second temperature sensors.
Abstract:
Process for regulating a compressor with motor for a refrigerating system, where the temperature of the cooling site is regulated through an on-off motor mode if the temperature in the compressor exceeds an upper temperature threshold. In addition, the temperature of the cooling site is regulated through a continuous on mode of the motor as soon as the motor has cooled to a lower temperature threshold. The controller converts a variable corresponding to the cooling requirement of the cooling site into a switch signal for a valve, which results in clocked opening and closing of the valve, or uses a frequency converter, which controls the cooling liquid flow through the compressor by regulating the voltage and the frequency of the motor in that the frequency converter converts a variable corresponding to the cooling requirement of a cooling site into a voltage and a frequency for the motor.
Abstract:
An implantable drug infusion pump for delivering drug therapy is made more reliable and its performance improved by monitoring drug pump temperature. Monitoring pump temperature can also provide for temperature-related drug therapy modification.A pump temperature sensor is read by the infusion pump's microprocessor. Pump temperature data is stored in pump memory for later access by a remote controller. A simple thermistor or semiconductor temperature sensor can provide fast and reliable temperature monitoring of the pump and/or of a patient by reading the temperature sensor's value and calculating a temperature therefrom.
Abstract:
A temperature management system for an air compressor includes a plurality of cooling fans coupled to an intercooler of the air compressor; an electrical relay comprising a coil and contacts operated by the coil; and a temperature switch coupled to the coil of the electrical relay. The contacts are located between the cooling fans and an electrical power supply. The temperature switch opens at a temperature above a predetermined temperature at a high pressure inlet of a high pressure stage of the air compressor, thereby closing the contacts of the electrical relay which applies power to the cooling fans.
Abstract:
An implantable drug infusion pump for delivering drug therapy is made more reliable and its performance improved by monitoring drug pump temperature. Monitoring pump temperature can also provide for temperature-related drug therapy modification.A pump temperature sensor is read by the infusion pump's microprocessor. Pump temperature data is stored in pump memory for later access by a remote controller. A simple thermistor or semiconductor temperature sensor can provide fast and reliable temperature monitoring of the pump and/or of a patient by reading the temperature sensor's value and calculating a temperature therefrom.
Abstract:
An apparatus controls a variable displacement compressor used in a refrigerant circuit. The compressor includes a drive shaft, which is rotated by an engine. When the drive shaft rotates, the compressor compresses refrigerant sent from the external refrigerant circuit and discharges the compressed refrigerant to an external refrigerant circuit. When the displacement of the compressor is minimized, the circulation of refrigerant in the refrigerant circuit is stopped. The apparatus has a control mechanism for varying the pressure in the crank chamber. A detector detects a physical quantity that reflects the heating status of the compressor. When the compressor displacement is minimized and the quantity detected by the detector indicates that the heating status of the compressor is deteriorating, a controller commands the control mechanism such that the displacement of the compressor is greater than the minimum displacement.