Abstract:
A field of view which is sighted through a telescope is simultaneously scanned by a rotating reticle and applied to an infrared detector to derive thermal information from the field of view. A light source is modulated by the infrared channel and the intensity-modulated light source is imaged through the same reticle and superimposed on the sight of the telescope. The operator will thus see in the telescope the view of the target scene with a red tinge in those regions in which the target is warm or overheated.
Abstract:
The present invention includes a temperature probe and use thereof. The temperature probe is configured to obtain a temperature of a blow molding preform, especially a temperature of an inside surface of the blow molding preform. In this manner, effectiveness of heating the preform can be evaluated, the presence of one or more temperature gradients ascertained, and the blow molding process can be optimized for a given preform.
Abstract:
Compact thermal sensor modules, which in some implementations can be manufactured in wafer-level fabrication processes, include features composed of or coated with a low-emissivity material to reduce or prevent detection by a sensor of radiation emitted by other parts of the module. For example, spacers that separate an optics substrate and a sensor package from one another can be composed of or coated with such a low emissivity material. In some cases, the low emissivity material has an emissivity of no more than 0.1.
Abstract:
A terahertz image beam is upconverted by a nonlinear optical process (e.g., sum- or difference-frequency generation with a near IR upconverting beam). The upconverted image is acquired by a near IR image detector. The terahertz image beam and upconverting beam comprise trains of picosecond pulses. The bandwidths and center wavelengths of the terahertz image beam and the upconverting beam are such that wavelength filtering can be employed to permit an upconverted image beam to reach the detector while blocking or substantially attenuating the upconverting beam.
Abstract:
Thermopile infrared sensor structure with a high filling level in a housing filled with a medium (15), consisting of a carrier substrate (11) which has electrical connections (28, 28′) to the outside and is closed with an optical assembly (13), wherein a sensor chip (14) is applied to the carrier substrate (11) in the housing, which chip has a plurality of thermoelectric sensor element structures (16), the so-called “hot contacts” (10) of which are located on individual diaphragms (3) which are stretched across a respective cavity (9) in a silicon carrying body (24) with good thermal conductivity, wherein the “cold contacts” (25) are located on or in the vicinity of the silicon carrying body (24). The problem addressed by the invention is that of specifying a thermopile infrared array sensor (sensor cell) which, with a small chip size, has a high thermal resolution and a particularly high filling level. This sensor is preferably intended to be operated in gas with a normal pressure or a reduced pressure and is intended to be able to be mass-produced in a cost-effective manner under ultra-high vacuum without complicated technologies for closing the housing. This is achieved by virtue of the fact that a radiation collector structure (17) is located above each individual diaphragm (3) of the sensor element structures (16) which spans a cavity (9).
Abstract:
A non-contact pyrometer and method for calibrating the same are provided. The pyrometer includes a radiation sensor configured to measure at least a portion of a radiance signal emitted from a target medium and output a voltage that is a function of an average of the absorbed radiance signal, and an optical window disposed proximate the radiation sensor and configured to control a wavelength range of the radiance signal that reaches the radiation sensor. The pyrometer may further include a reflective enclosure configured to receive the target medium therein, wherein the radiation sensor and the optical window are disposed within the reflective enclosure, an amplifier in communication with an output of the radiation sensor, and a data acquisition system in communication with an output of the amplifier.
Abstract:
A thermal detector includes a substrate, a thermal detection element and a support member. The substrate has a concave portion, a bottom surface of the concave portion forming a light-reflecting curved surface. The thermal detection element includes a light-absorbing film. The support member supports the thermal detection element with a cavity being provided between the substrate and the support member. The light-reflecting curved surface and the light-absorbing film overlap each other in plan view, the light-reflecting curved surface having a projected area in plan view larger than an area of the light-absorbing film.
Abstract:
An IR sensor comprises a heat sink substrate (10) having portions (12) of relatively high thermal conductivity and portions (14) of relatively low thermal conductivity and a planar thermocouple layer (16) having a hot junction (18) and a cold junction (20), with the hot junction (18) located on a portion (14) of the heat sink substrate with relatively low thermal conductivity. A low thermal conductivity dielectric layer (22) is provided over the thermocouple layer (16), and has a via (24) leading to the hot junction (18). An IR reflector layer (26) covers the low thermal conductivity dielectric layer (22) and the side walls of the via (24). An IR absorber (30; 30′) is within the via. This structure forms a planar IR microsensor which uses a structured substrate and a dielectric layer to avoid the need for any specific packaging. This design provides a higher sensitivity by providing a focus on the thermocouple, and also gives better immunity to gas conduction and convection.
Abstract:
The present invention provides an infrared sensor and an infrared sensor module having reduced noise, improved detection precision, and reduced manufacture cost. The infrared sensor includes a first substrate transmitting infrared light including at least one reduced-pressure and sealed cavity, at least one infrared sensing unit provided on the side of the first substrate, and at least one infrared sensing unit generating an output change. The infrared sensor includes a second substrate stacked on the first substrate with a recess, a reflection face capable of reflecting the infrared light, and at least one arithmetic circuit for amplifying or integrating an output, arranged in such a manner that the reflection face is sandwiched between the at least one sensing unit and the least one arithmetic circuit.