Abstract:
A low power consumption multi-contact micro electro-mechanical strain/displacement sensor and miniature autonomous self-contained systems for recording of stress and usage history with direct output suitable for fatigue and load spectrum analysis are provided. In aerospace applications the system can assist in prediction of fatigue of a component subject to mechanical stresses as well as in harmonizing maintenance and overhauls intervals. In alternative applications, i.e. civil structures, general machinery, marine and submarine vessels, etc., the system can autonomously record strain history, strain spectrum or maximum values of the strain over a prolonged period of time using an internal power supply or a power supply combined with an energy harvesting device. The sensor is based on MEMS technology and incorporates a micro array of flexible micro or nano-size cantilevers. The system can have extremely low power consumption while maintaining precision and temperature/humidify independence.
Abstract:
A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.
Abstract:
A weight sensor may include a weighing platform and a load cell coupled to the platform to sense a weight applied to the platform. The load cell may include a deformable plate with one or more strain gauges arranged to provide an electrical signal representing the weight applied to the platform, and a base supporting the load cell, wherein the deformable plate is movably mounted to the base at only three contact points, the contact points allowing lateral movement of the plate relative to the base when the plate deforms in response to a weight applied to the platform. The weight sensor makes it possible to independently monitor the weight and weight shifting of two people sharing the same bed. The weight sensor is self-centering when a load is applied off-center to the platform, which is particularly beneficial when such a weight sensor is used underneath a bed, e.g., under a bed leg or other support member which may not be aligned centrally over the weight sensor. Beneficially the sensor is not unduly affected by minor misalignment of the leg of a bed relative to the load cell.
Abstract:
A sensor for detecting impact is generally provided. The sensor may include a deformable beam. The deformable beam may include a first end, a second end, and an elongated body extending therebetween. At least the second end is coupled to a support structure. Further, the deformable beam may be configured to bend from a first configuration to a deformed configuration when the sensor experiences an acceleration above a predetermined threshold.
Abstract:
Systems and methods for perturbation analysis of harmonic oscillations in the time domain according to several embodiments can include a time domain switching sensor and a resonator for imposing a first oscillation and a second oscillation on the sensor. The first and second oscillations can have the same amplitude A and period P, but can have a known phase shift. The sensor can use a time interval, which can be defined by the time between when the sensor passes a reference point due to motion caused by the first oscillation and when the sensor passes the same reference point, but due to motion caused by the second oscillation. With this configuration an improved accuracy of measurement for the system can be realized.
Abstract:
A microfluidic embedded nanoelectromechanical system (NEMs) force sensor provides an electrical readout. The force sensor contains a deformable member that is integrated with a strain sensor. The strain sensor converts a deformation of the deformable member into an electrical signal. A microfluidic channel encapsulates the force sensor, controls a fluidic environment around the force sensor, and improves the read out. In addition, a microfluidic embedded vacuum insulated biocalorimeter is provided. A calorimeter chamber contains a parylene membrane. Both sides of the chamber are under vacuum during measurement of a sample. A microfluidic cannel (built from parylene) is used to deliver a sample to the chamber. A thermopile, used as a thermometer is located between two layers of parylene.
Abstract:
An electrically powered caliper is provided which includes a scale member, a slider, a displacement sensor, a force sensing arrangement and a signal processing portion. The signal processing portion is configured to receive a force signal and indicate a respective force corresponding to the respective position of the slider. Force data is acquired comprising a plurality of respective forces corresponding to respective positions of the slider. The signal processing portion defines an acceptable measurement force range defined by at least a minimum force threshold that is determined such that it exceeds a compensation force corresponding to at least one force component included in the force signal that is independent of user variations of the measurement force. It may analyze acquired force data to identify pre-contact data, and set the minimum force threshold for a current measurement procedure based on that pre-contact data.
Abstract:
A sensing device includes a nanowire configured to deform upon exposure to a force, and a transducer for converting the deformation into a measurement. The nanowire has two opposed ends; and the transducer is operatively connected to one of the two opposed ends of the nanowire. The other of the two opposed ends of the nanowire is freestanding.
Abstract:
The present invention provides three-dimensional force input control devices for use in sensing vector forces and converting them into electronic signals for processing, and methods of fabricating three-dimensional force input control devices for sensing vector forces and converting them into electronic signals for processing. In some embodiments, methods of fabricating provide a semiconductor substrate having a side one and a side two; fabricate stress-sensitive IC components and signal processing IC on side one of the substrate; fabricate closed trenches on side two of the substrate, the trenches forming boundaries defining elastic elements, frame areas, and rigid islands, and remove additional substrate material from side two of the substrate in the frame area leaving the dimension of the rigid island protruding outward from side two.
Abstract:
A load cell for measuring extremely low level, anisotropic biaxial loads is disclosed. The system includes at least one load cell of a specific geometry and dimension which, when mounted, provides a rotationless system accurately transmitting both normal and shearing strains to strain gauges mounted thereon. More specifically, by shaping the load cell so as to concentrate the strains imposed thereon, detection of extremely minute loads, such as coefficients of friction, can be measured.