Abstract:
In one aspect, an optical sensor is used to detect defects, which can appear on smooth surfaces, is provided. The sensor includes a telecentric laser scanner and a detection unit. The scanner includes a laser for the approximately perpendicular illumination of a smooth surface, a scanning mirror, and a telecentric optical system for guiding illumination and detection beams the detection unit includes an optical detector system, a central diaphragm, which is concentrically positioned in the vicinity of the optical detector system in the direction toward the telecentric laser scanner, a highly sensitive photomultiplier for detecting scattered light, which emanates from defects on smooth surfaces, and a slit diaphragm arranged upstream of the photomultiplier.
Abstract:
A method and apparatus for obtaining reference samples during the generation of a mid-infrared (MW) image without requiring that the sample being imaged be removed is disclosed. A tunable MIR laser generates a light beam that is focused onto a specimen on a specimen stage that moves the specimen in a first direction. An optical assembly includes a scanning assembly having a focusing lens and a mirror that moves in a second direction, different from the first direction, relative to the stage such that the focusing lens maintains a fixed distance between the focusing lens and the specimen stage. A light detector measures an intensity of light leaving the point on the specimen. A controller forms an image from the measured intensity. A reference stage is positioned such that the mirror moves over the reference stage in response to a command so that the controller can also make a reference measurement.
Abstract:
An instrument and method for scanning a large specimen supported on a specimen holder has a plurality of illumination sources with each illumination, source being focused on a different focus spot of the specimen simultaneously. There are a plurality of spectrally resolved detectors to receive light reflected or emitted from the different focus spots simultaneously with each spectrally resolved detector receiving light from one illumination source only.
Abstract:
Methods and devices are disclosed which apply an excitation-emission matrix (EEM) to a heterogeneous, two-dimensional sample, allowing a considerably larger number of emitting, e.g. fluorescent, labels to be used simultaneously. This may be accomplished by employing a spectroscopic method of excitation-emission matrices which allows discrimination of species with similar emission spectra, and also allows positive identification of energy transfer between emitting species. The methods and devices may employ a novel excitation-light scanning technique which allows imaging of the emission from the heterogeneous sample both in two spatial dimensions (length and width) and in two spectral dimensions (excitation and emission wavelength). This light scanning technique maximizes the throughput of excitation light, increasing the sensitivity and hence the reading speed of the instrument.
Abstract:
A method for scanning a surface, consisting of focusing an array of optical beams using optics having an axis, so as to illuminate a region of the surface intercepted by the axis, such that each optical beam illuminates a portion of a respective sub-region within the region. The method further includes moving at least one of the array and the surface so as to cause a translation of the surface relative to the axis in a first direction. During the translation in the first direction, each of the optical beams is scanned over the respective sub-region in a second direction, which is different from the first direction.
Abstract:
A system and method for multimode imaging of at least one sample is disclosed. The system includes at least one light source; an optical system selected responsive to a mode of operation of the imaging system; and a detector capable of selective reading of pixels. The at least one sample is moved elative to the optical system using a sample movement technique selected from the group consisting of step sample moving and continuous sample moving. The method includes the steps of (1) selecting a mode of operation for the imaging system; (2) transmitting light from at least one light source through an optical system selected in response to the mode of operation for the imaging system; (3) moving the at least one sample relative to the optical system using a sample movement technique selected from the group consisting of step sample moving and continuous sample moving; and (4) selectively reading pixels with a detector.
Abstract:
A method for scanning a surface, consisting of focusing an array of optical beams using optics having an axis, so as to illuminate a region of the surface intercepted by the axis, such that each optical beam illuminates a portion of a respective sub-region within the region. The method further includes moving at least one of the array and the surface so as to cause a translation of the surface relative to the axis in a first direction. During the translation in the first direction, each of the optical beams is scanned over the respective sub-region in a second direction, which is different from the first direction.
Abstract:
Scanning of a microarray is performed through a mask that exposes a plurality, but not all, of the sites of the microarray, and either the mask is movable relative to the microarray or the microarray is movable relative to the mask, or both. The mask is useful as a means of restricting the illumination of sites on the microarray to those that can be illuminated while the scan head is traveling at a steady, target velocity, blocking the passage of light between the scan head and the microarray at those points in the scan head trajectory where the scan head is either accelerating or decelerating. The mask is also useful for reducing background noise in the microarray image by preventing light spillage to sites adjacent to those being scanned.
Abstract:
Methods and devices are disclosed which apply an excitation-emission matrix (EEM) to a heterogeneous, two-dimensional sample, allowing a considerably larger number of emitting, e.g. fluorescent, labels to be used simultaneously. This may be accomplished by employing a spectroscopic method of excitation-emission matrices which allows discrimination of species with similar emission spectra, and also allows positive identification of energy transfer between emitting species. The methods and devices may employ a novel excitation-light scanning technique which allows imaging of the emission from the heterogeneous sample both in two spatial dimensions (length and width) and in two spectral dimensions (excitation and emission wavelength). This light scanning technique maximizes the throughput of excitation light, increasing the sensitivity and hence the reading speed of the instrument.
Abstract:
An image reading apparatus is adapted for irradiating an image carrier including a labeling substance contained in two-dimensionally distributed spots with a stimulating ray and photoelectrically detecting light released from the labeling substance, thereby producing image data, and the image reading apparatus includes at least one stimulating ray source for emitting a stimulating ray, a lens for shaping the stimulating ray emitted from the at least one stimulating ray source into a line beam, a sensor for photoelectrically detecting light released from the labeling substance, and a controller for performing a stimulation and detection step of irradiating the image carrier including the labeling substance contained in the two-dimensionally distributed spots with the line beam of the stimulating ray to stimulate the labeling substance, stopping irradiation with the line beam of the stimulating ray and causing the sensor to photoelectrically detect light released from the labeling substance after the completion of irradiation with the line beam of the stimulating ray. According to the thus constituted image reading apparatus, it is possible to produce low noise image data rapidly and with a simple operation by irradiating an image carrier including two-dimensionally distributed spots of a labeling substance such as a fluorescent substance, a radioactive labeling substance or the like with a stimulating ray to excite the labeling substance and photoelectrically detecting light released from the labeling substance.