Abstract:
A system includes a storage device for storing details of a plurality of reservations of a hospitality establishment. A particular reservation includes a set of reservation-specific settings affecting behavior of the computer network at the hospitality establishment during the reservation. The settings may include a registered device setting for affecting behavior of a computer network at the hospitality establishment toward a user device having a specified device identifier. The system further includes a clock unit for tracking time, and a system controller coupled to the computer network and having access to the storage device and the clock unit. The system controller automatically configures one or more network components of the computer network when a start time of the particular reservation is reached in order to activate the reservation-specific settings.
Abstract:
A power line communication network, comprising: a plurality of network terminals and at least one power line, wherein each terminal is coupled to said at least one power line such that the terminals are interconnected. Each terminal comprises: a power line interface; at least one processor and at least one memory; a plurality of resources that include at least one signal input and/or signal output; wherein at least one of said terminals has computer code that includes an operating system for controlling the power line communication network, the operating system including: a control layer for controlling access to the processor, memory and resources of each terminal; a virtual machine interface through which virtual machines can access said resources; and a virtual machine manager for controlling access to said resources, wherein said virtual machine manager accesses said resources through the control layer.
Abstract:
A method is provided in one example embodiment and may include monitoring, by a radio access network (RAN) orchestration function, impairments between a plurality of candidate locations interconnected by a transport network, wherein one or more network elements capable of performing one or more operations associated with a RAN are located at the plurality of candidate locations; determining a decomposition of one or more operations associated with the RAN into a plurality of sets of virtualized network functions (VNFs) to execute the operations; determining a distribution of the plurality of sets of VNFs among the one or more network elements associated with the RAN for one or more optimal locations of the plurality of candidate locations based, at least in part, on the monitored impairments; and instantiating the plurality of sets of VNFs at each of the one or more optimal locations.
Abstract:
A method is provided in one example embodiment and includes allocating by a scheduler a transmission opportunity to each of one or more flows listed in a tracking table associated with the a scheduler; and, for each of the one or more flows, sending a bandwidth allocation message to a network element associated with the flow in accordance with a schedule maintained by the scheduler, wherein the bandwidth allocation request is unsolicited by the network element; and determining whether the flow optimized use of the transmission opportunity in accordance with an allocation policy implemented by the scheduler. The method further includes adjusting the schedule in accordance with results of the determining for each of the one or more flows. In certain embodiments, the allocating may comprise allocating an equal transmission opportunity to each of the one or more flows.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Peer to Peer communication. For example, a device may include a controller to generate a Peer to Peer discovery frame including at least one Multicast attribute, the Multicast Attribute including an address field and one or more attribute fields, the address field to indicate a plurality of devices; and a radio to transmit the Peer to Peer discovery frame, and to transmit multicast traffic to the plurality of devices according to the one or more attribute fields.
Abstract:
Network resource configuration is provided by receiving subscriber data, the subscriber data relating to network related activities and subscriber related activities of subscribers in a group of subscribers of a network operator of a communications system. A churn score is determined for each subscriber in the group of subscribers based on a set of churn score parameters for the subscriber data, the churn score representing probability of a subscriber to churn. A subgroup of subscribers is determined from the group of subscribers based on the churn score. A network resource configuration in the communications system is determined for the subgroup of subscribers based on the churn score. Information relating to the determined network resource configuration and/or a service related to the determined network resource configuration is transmitted.
Abstract:
Methods, systems, and techniques for managing groups of entities, such as individuals, employees, or systems, and providing entitlement and access to computer resources based on group membership are provided. Example embodiments provide a Group Management System having a Group Management Engine “GME,” an Entitlement Engine, and a Provisioning Engine, which work together to allow simplified grouping of entities and providing entitlement and access to the entities based upon the group membership. In one embodiment, the GME leverages dynamic programming techniques to enable accurate, scalable systems that can manage near real time updates and changes to the group's status or to the entities' status. These components cooperate to enable provisioning of applications based upon current entitlement.
Abstract:
A unifying network model with a structure and architecture configured to address security, interoperability, mobility, and resource management, including priority and quality of services is provided. The network of the network model is structured as a hierarchical mesh network, with dynamically generated routing tables. The configuration of the network model optimizes routing and distributes communication load. Every device on the network is capable of being both an endpoint and a forwarder of communications. The network model may include underlying networks that are represented with one of two models, the link model or the star model. The nodes are organized in a hierarchical relationship structure to optimize throughput. The model may include a cryptographic method of dynamically assigning local network addresses.
Abstract:
A network system for improving network communication performance is provided. The system include at least one client site network component implemented at least at a first client site, the client site network component bonding or aggregating one or more diverse network connections so as to configure a bonded connection that has increased throughput, at least one network server component configured to connect to the client site network component using the bonded connection, the network server component automatically terminating the bonded connection and passing data traffic to the at least one network, a virtual control plane interface at the at least one network server component, and a cloud network controller configured to manage the data traffic, wherein the cloud network controller is operable to configure the virtual control plane interface to provide a priority queue for the data traffic from or to a plurality of client site network components.
Abstract:
A policy enforcer device may determine a value of multiple controls included on a control device. The multiple controls may be associated with zones of a facility. The policy enforcer device may determine, based on the values of the plurality of controls, relative amounts of bandwidth to allocate, of a total amount of available bandwidth, to the zones of the facility; and control one or more network devices to provide the determined amounts of bandwidth to the zones of the facility.