Abstract:
Processes are provided including quenching a hot vapor stream to improve rapid thermal conversion processes for efficiently converting wood, other biomass materials, and other carbonaceous feedstock (including hydrocarbons) into high yields of valuable liquid product, e.g., bio-oil, on a large scale production.
Abstract:
A process for power generation using a chemical looping combustion concept is integrated with heavy liquid fuel coking in a cracking reactor, and is configured such that petcoke deposits on metal oxide particles from the cracking reactor are used as fuel in the chemical looping combustion reaction. The process is also configured such that metal oxide particles provide the heat necessary for the cracking reaction to be initiated in the cracking reactor.
Abstract:
The present invention is directed to the upgrading of heavy hydrocarbon feedstock. The process of the present invention provides for the preparation of a partially upgraded feedstock exhibiting reduced viscosity and increased API gravity. This process reduces the viscosity of the feedstock in order to permit pipeline transport of the upgraded feedstock with little or no addition of diluents. The method for upgrading a heavy hydrocarbon feedstock comprises introducing a particulate heat carrier into an upflow reactor, introducing the heavy hydrocarbon feedstock into the upflow reactor at a location above that of the particulate heat carrier, allowing the heavy hydrocarbon feedstock to interact with the heat carrier to produce a product stream, separating the product stream from the particulate heat carrier, regenerating the particulate heat carrier, and collecting a gaseous and liquid product from the product stream.
Abstract:
An asphalt mastic is prepared by combining spent activated carbon, that has not been regenerated, with liquid asphalt to achieve a composition that is useful for a variety of applications for which asphalt is used, including aggregate compositions and roofing materials. The activated carbon can also serve as a foaming initiator for the production of foamed asphalt. Still further, the activated carbon can be used as coking unit feedstock and as a quencher for a delayed coking unit.
Abstract:
A two-stage process for obtaining a substantial amount of olefinic product from a residua feedstock. The first stage is comprised of a thermal process unit containing a reaction zone comprised of a horizontal moving bed of fluidized hot particles operated at temperatures from about 500.degree. to 600.degree. C. and having a short vapor residence time, and the second stage thermal conversion zone operated at a temperature of about 700.degree. C. to about 1100.degree. C., and also having a short vapor residence time.
Abstract:
A process for converting liquid or semi-liquid hydrocarbon charges to lighter fractions comprises a first step (a) heating droplets jets of the charge introduced into a pyrolysis chamber by surrounding them with parallel jets of hot solid particles, of relatively large size, of a heat carrier material, not substantially in contact with the droplet jets, so as to maintain a temperature of 700.degree.-1600.degree. C., and introducing a gas so as to obtain a pressure from 1 to 150 bars. A second step involves (b) separating the gaseous fraction from the solid particles. Thereafter (c) at least a portion of the solid particles are heated and fed back to step (a). The gaseous fraction is (d) cooled by means of a cold gas so as to recover light hydrocarbons therefrom.
Abstract:
A gas-liquid or a gas-liquid-solid feed is contacted in a vessel containing a packed bed of contact particles. At least a portion of the feed is passed upwardly through the packed bed and the mass flow rate of the feed is periodically increased sufficiently to cause a portion of the particles within the vessel to form an expanded region within the packed bed.
Abstract:
A solid product resulting from the nucleated growth of the product on solid material of either the same or different composition and having a density higher than the reaction medium is formed from one or more liquid phase reactants by a method which comprises tangentially introducing the liquid phase reaction medium into the lower, smaller end of an inverted, frusto-conical reactor-separator, thereby imparting an upward swirling motion to the reaction medium in the reactor-separator, the horizontal velocity at the bottom of the reactor-separator being sufficiently large to cause fluidization of larger, solid product particles and concentration of them in the central lower portion of the reactor-separator and the vertical velocity at the top of the reactor-separator being sufficiently small to avoid carry-over of the smaller solid particles but sufficiently large to concentrate them in the upper portion of the reactor-separator; at least periodically recovering the larger, solid product particles in spherical form from the bottom of the reactor-separator; and recovering fluid products from the top of the reactor-separator. The method described is useful in a variety of reactions wherein a solid product forms by a nucleated growth mechanism. Examples of such reactions include thermal upgrading of petroleum derived feedstocks and coal liquids, synthesis of zeolites and Ziegler-Natta polymerization of olefins.
Abstract:
In a reactor for cracking heavy hydrocarbon oil through a fluidized bed of particles of natural ores, coke-like materials are deposited on a top of the reactor or pipe inside surfaces of a transfer line from the reactor to a scrubber. To effectively scour out the deposited coke-like materials, particles of natural ores having a mean diameter of a few hundred .mu.m is made to be contained in an effluent gas from the top of reactor, passing through the transfer line at a concentration of 1 to 40 g/m.sup.3. The particles of natural ores have a good effect of scouring out the deposited coke-like materials and can keep the transfer line efficiently clean even with a small amount of the particles of natural ores, decreasing a pressure drop in the transfer line.
Abstract translation:在通过天然矿石颗粒的流化床裂解重质烃油的反应器中,焦炭状材料沉积在反应器的顶部或从反应器到洗涤器的输送管线的内表面中。 为了有效地冲出沉积的焦炭状材料,使平均直径为几百微米的天然矿石颗粒被包含在来自反应器顶部的流出气体中,其浓度为1 至40g / m 3。 天然矿石颗粒具有很好的清除沉积的焦炭状物质的效果,并且即使用少量的天然矿石颗粒也能有效地清洁输送管线,从而降低输送管线中的压降。
Abstract:
There is provided an apparatus comprising rotating inner and outer concentric tubes. The inner tube provides a vapor zone and the annular space between the tubes provides a combustion zone. Hot particulate solids, such as sand, are advanced along an endless path through the vapor zone, back through the combustion zone and back into the vapor zone. In the vapor zone, oil is sprayed on the hot solids. The mixture is mixed and cascaded to obtain heat transfer from the solids to the oil, thereby generating hydrocarbon vapors and coke deposition on the solids. The vapors are removed by suction from the vapor zone. The coked solids are transferred into the combustion zone and cascaded and lifted and dropped therein to mix with added oxygen. Coke is burned to heat the solids which are then returned to the vapor zone. The vapors generated in the combustion zone are removed by suction. Segregation of the atmospheres in the two zones is achieved by a combination of maintaining equal pressures in the zones and using the solids, being transferred from one zone to the other, to block gas flow.