Abstract:
Disclosed is a method for producing a quality lubricant base oil (meeting the standard of Group III or higher) comprising: decarbonylating mixed fatty acids derived from oils and fats of biological origin to produce mixed olefins; oligomerizing the mixed olefins to produce an olefinic lubricant base oil; and performing hydrogenation to remove olefins from the olefinic lubricant base oil.
Abstract:
The invention relates to a food-grade high-temperature lubricant, more particularly a high-temperature oil and a high-temperature grease, comprising the following components: a) at least one oil selected from a trimellitic ester or a mixture of different trimellitic esters, alkylaromatics, preferably an aliphatically substituted naphthalene, or estolides; b) a hydrogenated or fully hydrogenated polyisobutylene or a mixture of hydrogenated or fully hydrogenated polyisobutylene; and c) additives individually or in combination. In the case of the high-temperature grease, a thickener is added.
Abstract:
This disclosure relates to a liquid syndiotactic polyalphaolefin, sPAO, comprising one or more C4 to C24 monomers, said sPAO having: a) an rr triad content of 5 to 50% as measured by 13C NMR; b) an mr triad content of 25 to 60% as measured by 13C NMR, where the mr to mm triad ratio is at least 1.0; c) a pour point of Z° C. or less, where Z=0.0648X−51.2, where X=kinematic viscosity at 100° C. as reported in centistokes (cSt); d) a kinematic viscosity at 100° C. of 100 cSt or more (alternatively 200 cSt or more); e) a ratio of mr triads to rr triad (as determined by 13C NMR) of less than 9; f) a ratio of vinylidene to 1,2-disubstituted olefins (as determined by 1H NMR) of less than 8; g) a viscosity index of 120 or more; and h) an Mn of 40,000 or less. This disclosure further relates to processes to make and use sPAOs, including those having any combination of characterics a) to h).
Abstract:
A lubricating oil composition for high-temperature applications contains (A) a pyromellitate ester, (B) a sulfur-containing triazine antioxidant, and (C) a thiophosphoric acid ester antioxidant. When the lubricating oil composition for high-temperature applications according to the invention is applied to a chain, a gear, a bearing and the like, an amount of evaporation of the lubricating oil composition is restrained for a long time and fluidity thereof is also kept for a long time.
Abstract:
Provided are an additive for lubricating oil, including a compound represented by the following general formula (1) as an essential component, and a lubricating oil composition blending same: where R1, R3, R5, and R7 each independently represent an alkyl group having 1 to 20 carbon atoms, R2, R4, R6, and R8 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, A represents a hydrocarbon group having 2 to 20 carbon atoms, and n represents a number from 1 to 10.
Abstract:
There is described an electrorheological fluid comprising particles of a composite material suspended in an electrically insulating hydrophobic liquid. The composite particles are metal salts of the form M1xM22-2xTiO(C2O4)2 where M1 is selected from the group consisting of Ba, Sr and Ca and wherein M2 is selected from the group consisting of Rb, Li, Na and K, and the composite particles further include a promoter selected from the group consisting of urea, butyramide and acetamide.
Abstract:
A two-cycle oil is disclosed comprising a high and low molecular weight polybutene polymer, solvent and mineral oil which has suitable viscosity and exhibits improved smoke performance in the JASO test.
Abstract:
A synthetic hydrocarbon fluid is prepared by oligomerizing an olefin reactant in the presence of a catalyst prepared by reacting tungsten hexafluoride and hydrogen fluoride at a moderate temperature. For example, 1-butene is oligomerized at a temperature of about 40.degree. C. in the presence of a catalyst obtained by reacting tungsten hexafluoride and hydrogen fluoride in a four to one mol ratio. The liquid oligomer product is then hydrogenated to remove residual unsaturation.
Abstract:
A grease composition which contains a base oil (A), a urea-based thickener (B), a sarcosine derivative (C), and a fatty acid zinc salt (D), wherein particles containing the urea-based thickener (B) in the grease composition satisfies Requirement (I). The base oil (A) is a blended base oil containing a high viscosity hydrocarbon-based synthetic oil having a specific kinematic viscosity (A1). A low viscosity hydrocarbon-based synthetic oil having a specific kinematic viscosity (A2). An ultra-high viscosity hydrocarbon-based synthetic oil has a number average molecular weight (Mn) of 2,500 to 4,500 and a specific kinematic viscosity (A3). A 40° C. kinematic viscosity of the base oil (A) is 500 mm2/s to 1,500 mm2/s. A viscosity index of the base oil (A) is 140 or more. A content of the fatty acid zinc salt (D) is 10 mass % to 20 mass % based on a total amount of the grease composition.
Abstract:
A hybrid grease is provided having low coefficients of friction and high wear protection which is employable over a wide temperature range. The hybrid grease includes a combination of a grease based on a silicone oil in conjunction with a grease based on synthetic hydrocarbon oils, mineral oils or polyglycols. The hybrid grease may especially be used to lubricate joints in vehicle parts based on plastic-steel pairings.