Abstract:
An electronics cabinet having a cabinet frame, a front equipment rail, and a structural air dam. The cabinet frame includes a first pair of front-to-back beams connected to a pair of top side-to-side beams to form a top frame, a second pair of front-to-back beams connected to a pair of bottom side-to-side beams to form a bottom frame, and a plurality of vertical post connected to the top frame and the bottom frame. The front equipment rail is removably connected to one of the first pair of front-to-back beams and to one of the second pair of front-to-back beams. The structural air dam is connected to the front equipment rail and to one of the plurality of vertical posts.
Abstract:
The present invention generally relates to the field of fiber optics, and more specifically to optical fibers, methods of manufacturing optical fibers, and methods of classifying optical fibers. In an embodiment, the present invention is a multimode optical fiber which comprises a core and clad material system where the refractive indices of the core and cladding are selected to minimize chromatic dispersion in the 850 nm wavelength window and the refractive index profile is optimized for minimum modal-chromatic dispersion in channels utilizing VCSEL transceivers. Multimode optical fibers according to this embodiment may have increased channel bandwidth.
Abstract:
An aisle containment system is disclosed. The aisle containment system includes a frame defined by wall beams, header frames, and a plurality of posts secured to the wall beams and header frames. The header frames extend the width of the frame and the wall beams extend the length of the frame. A plurality of blanking panels extend from the floor to one of the wall beams. The plurality of blanking panels have a top, a bottom, a first side and a second side. Vertical stiffeners are positioned along at least one of the first side and the second side of each blanking panel. The blanking panels overlap adjacent blanking panels along the length of the frame. The blanking panels are laterally adjusted to fill openings in the aisle containment system.
Abstract:
The present invention generally relates to the field of fiber optics, and more particularly, to apparatuses, systems, and methods directed towards improving effective modal bandwidth within a fiber optic communication environment. In an embodiment, a multimode optical fiber in accordance with the present invention comprises a core and cladding material system where the refractive indices of the core and cladding are selected to modify the shape of the profile dispersion parameter, y, as a function of wavelength in such a way that the alpha parameter (α-parameter), which defines the refractive index profile, produces negative relative group delays over a broad range of wavelengths. The new shape of the profile dispersion parameter departs from traditional fibers where the profile dispersion parameter monotonically decreases around the selected wavelength that maximizes the effective modal bandwidth (EMB).
Abstract:
A communication adapter that includes an RJ45 jack with a plurality of plug interface contacts and an ARJ45 plug including a plurality of plug contacts. The plug interface contacts are in electrical communication with the plug contacts. The RJ45 jack and the ARJ45 plug are connected by a housing.
Abstract:
A faceplate assembly is disclosed. The faceplate assembly includes a cover and a backing plate. The cover has at least one hood positioned at an edge of the cover. The backing plate is connected to the cover. The hood creates an opening between the cover and the backing plate to enable cables to be routed therethrough. The backing plate also has an outer edge with a split to enable the backing plate to be installed over pre-installed cables.
Abstract:
In accordance with the following description, an optical communication connector includes a ferrule having retractable alignment pins that are actuable between an extended position and a retracted position. For example, the connector may include an inner housing assembly having optical fibers and an outer housing positioned over the inner housing assembly. The outer housing is shaped to be removable from the inner housing assembly, which has a movable pin clamp mechanically coupled to alignment pins for aligning the connector with another connector. The pin clamp may be slid from a first position (corresponding to a male gender) to a second position (corresponding to a female gender). Separately or in combination with changing gender, the polarity of a communication connector may be changed due to its inclusion of an asymmetric polarity-changing feature that is actuable by an installer to change a polarity of the communication connector. Such a feature may actuated by being moved from a first position to a second position relative to the communication connector.
Abstract:
A communication system has a support and a communication connector attached to the support wherein the connector assembly has a termination lever. The system can further include a wire cap connected to a plurality of cable conductors. The wire cap can include a cover cap. The cover cap latches to the connector assembly when the wire cap and the plurality of cable conductors is terminated to the communication connector assembly. The support can be one of a faceplate, a patch panel, a surface mount box, or a media distribution unit.
Abstract:
A system for testing electrical continuity of a device to a source wherein there is at least one conductor connecting the device to the source can include a reference capacitive load, an oscillator, and a microprocessor. The oscillator is selectively connected to the reference capacitive load and each conductor connecting the device to the source such that the frequency output of the oscillator is a function of the selected capacitive load of the oscillator. Each conductor connecting the device to the source is connected to the oscillator such that when each one is selectively connected, the output of the oscillator is a function of that conductor's parasitic self-capacitance. The microprocessor can then compare the frequency of the signal generated when each conductor is connected to the oscillator with the frequency of the signal generated when the reference capacitive load is connected.
Abstract:
In one embodiment, the present invention is a communication connector, comprising a compensation circuit for providing a compensating signal to approximately cancel an offending signal over a range of frequency, the compensation circuit including a capacitive coupling with a first magnitude growing at a first rate over the range of frequency and a mutual inductive coupling with a second magnitude growing at a second rate over the range of frequency, the second rate being greater than the first rate (e.g., the second rate approximately double the first rate).