Abstract:
A process and apparatus for producing olefin polymers are disclosed, comprising:a. polymerizing one or more olefins in the gas phase, in the presence of an olefin polymerization catalyst, whereby growing polymer particles flow along a cylindrically-shaped downward path in densified form under the action of gravity so as to form a densified bed of downward-flowing polymer particles b. allowing said polymer particles to flow through a restriction of the densified bed, such restriction being positioned in a restriction zone extending from the bed upward to a distance of 15% of the total height of the densified bed; and c. metering an antistatic agent through a feed line connected to the densified bed at a feed point being located in a feed zone extending from the top of the restriction upward, to a distance five times the diameter of the section of the densified bed above the restriction.
Abstract:
A catalyst system obtainable by contacting: A) a metal complex of formula (I) B) an iron complex of the general formula (II) C) an alumoxane or a compound capable of forming an alkyl cation with complexes of formula (I) and (II); Wherein the variables are described in the description.
Abstract:
The present invention relates to a slurry process for preparing an ethylene polymer having a melt flow ratio F/P, which is the ratio among the melt index value measured according to ASTM 1238 condition “F” and the melt index value measured according to ASTM 1238 condition “P” of equal to or lower than 27, carried out in two or more stages of polymerization at temperatures in the range from 60 to 120° C., in which at least two of the said two or more polymerization stages are carried out under different amounts of molecular weight regulator, said process being carried out in the presence of (A) a solid catalyst component comprising Ti, Mg, halogen, having a porosity (PF), measured by the mercury method and due to pores with radius equal to, or lower than, 1 μm, of at least 0.3 cm3/g and a surface area determined by BET method, of lower than 100 m2/g, and being further characterized by the fact that more than 50% of the titanium atoms are in a valence state lower than 4 and (B) of an organoaluminum compound.
Abstract:
The present disclosure relates to a propylene-1-hexene copolymer having: i) a content of 1-hexene derived units ranging from 0.6 wt % to 3.0 wt %; ii) a melt flow rate (MFR) measured according to the method ISO 1133 (230° C., 5 kg) ranging from 0.5 g/10 min to 5.0 g/10 min; iii) a polydispersity (PI) ranges from 4.5 to 10 and the distribution of molecular weight is of multimodal type; iv) a melting point ranging from 160° C. to 145° C.; and v) a differential scanning calorimetry (DSC) curve (temperature/heat of fusion) that shows at least two peaks.
Abstract:
Composition comprising (A) from 30 to 60 by weight, of a soft polyolefin composition comprising, 10-50% by weight of a copolymer (a) of propylene, which copolymer contains from 1 to 8% of comonomer content; 50-90wt % of a copolymer (b) of ethylene and other alpha-olefin(s), containing from 57 to 80% of ethylene; wherein the weight ratio of the content of copolymer component (b) to the fraction XS soluble in xylene at room temperature (about 25° C.), both (b and XS) referred to the total weight of (a)+(b), is of 1.5 or less, and the intrinsic viscosity [η] of the said XS fraction is of 3 dl/g or more; and the total quantity of copolymerized ethylene is preferably from 30% to 65% by weight; (B) from 5 to 30 wt % of a glass fiber filler; (C) from 0 to 5% by weight of a compatibilizer; (D) from 10 to 40 by weight of a polypropylene component selected from propylene homopolymers, propylene copolymers containing up to 5% by moles of ethylene and/or C4-C10 α-olefin(s) and combinations of such homopolymers and copolymers, wherein the Melt Flow Rate, of the polypropylene component D) is generally from 0.3 to 2500 g/10 min.
Abstract:
A polymer composition and/or an article containing: (a) a random propylene terpolymer which comprises: (i) 90.0-96.0 wt. %, based on the total weight of the propylene terpolymer, of propylene derived units; (ii) 3.0-7.0 wt. %, based on the total weight of the propylene terpolymer, of 1-butene derived units; and (iii) 1.0-5.0 wt. %, based on the total weight of the propylene terpolymer, of ethylene derived units; and (b) about 0.01 to about 1.0 wt. %, based on the total weight of the propylene terpolymer, of a clarifying agent, with the balance of the polymer composition being the random propylene terpolymer and/or optionally at least one additive.
Abstract:
A solid catalyst component for the (co)polymerization of olefins CH2═CHR, in which R is a hydrocarbyl radical with 1-12 carbon atoms, optionally in mixture with ethylene, comprising Ti, Mg, Cu, Cl, and an electron donor compound characterized by the fact that the Cu/Ti weight ratio is lower than 0.5.
Abstract:
The present disclosure provides a polyolefin-based composition suitable for use as adhesives and/or tie-layer adhesive compositions as well as a multi-layered structure made from and/or containing the polyolefin-based composition. The polyolefin-based composition is made from and/or contains (a) a grafted polyolefin composition, (b) a first polymer composition, (c) a polypropylene-containing blend composition, and (d) optionally, an additives composition having one or more additives.
Abstract:
Catalyst component for the polymerization of olefins comprising Mg, Ti and an electron donor compound of the following formula (I) in which R2-R8 groups, equal or different to each other, are selected from hydrogen, halogen and C1-C15 hydrocarbon groups, optionally containing an heteroatom selected from halogen, O, P, S, N, and Si and R9 groups are selected from C1-C15 hydrocarbon groups optionally containing an heteroatom selected from halogen, O, P, S, N, and Si.
Abstract:
The present invention is a polyolefin composition, which comprises a thermoplastic olefin polymer and a polyethylene. The thermoplastic olefin polymer (TPO) comprises a polypropylene and an olefin copolymer and is present in an amount of about 10 weight percent to about 50 weight percent; the TPO has a density in the range of about 0.85 g/cm3 to about 0.92 g/cm3 and a flexural modulus of less than about 700 MPa as measured by ISO 178. The polyethylene is either a medium density polyethylene or a high density polyethylene and present in an amount of about 50 weight percent to about 90 weight percent. The polyolefin composition is useful for preparing articles of manufacture such as sheets, roofing membranes, geomembranes, soft skins, drawn tapes, drawn fibers, and drawn filaments.
Abstract translation:本发明是一种聚烯烃组合物,其包含热塑性烯烃聚合物和聚乙烯。 热塑性烯烃聚合物(TPO)包含聚丙烯和烯烃共聚物,其量为约10重量%至约50重量%; TPO具有在约0.85g / cm 3至约0.92g / cm 3范围内的密度以及通过ISO 178测量的小于约700MPa的挠曲模量。聚乙烯是中密度聚乙烯或高密度聚乙烯, 存在量为约50重量%至约90重量%。 聚烯烃组合物可用于制备制品,例如片材,屋顶膜,土工膜,软皮,拉伸带,拉伸纤维和拉伸长丝。