Abstract:
A vehicle object detection system includes a vehicle body structure, a sensing device, a video display and a controller. The vehicle body structure defines a passenger compartment and has an outer surface. The sensing device is configured to detect an object within a prescribed area adjacent to the outer surface of the vehicle body structure. The video display is viewable from within the passenger compartment and is configured to display images representing the prescribed area adjacent to the outer surface of the vehicle body structure. The controller is configured to process object information received from the sensing device, determine the distance between the outer surface of the vehicle body structure and the object, and display on the video display a representation of the object and a numeric representation of the distance between the outer surface of the vehicle body structure and the object.
Abstract:
A transverse link has an inboard side and an outboard side. A steering knuckle has an upper end, a wheel supporting section and a lower end. The lower end is pivotally coupled to the outboard side of the transverse link. A strut has an upper end and a lower end. An upper knuckle breakaway structure attaches the upper end of the steering knuckle to the lower end of the strut. The upper knuckle breakaway structure has a frangible part that releases the upper end of the steering knuckle from the lower end of the strut upon application of a prescribed rearward directed force. A transverse link breakaway structure couples the inboard side of the transverse link to a lower suspension support structure such that upon application of the prescribed rearward directed force the inboard side of the transverse link is released from the lower suspension support structure.
Abstract:
A method for capturing and displaying images includes a plurality of operations. A first video camera is fixedly attached to a vehicle at a first fixed location in a prescribed orientation relative to a cargo area defined within a vehicle body structure of a vehicle. An electronic display is provided within the vehicle. Video images of the cargo area are captured using the first video camera. The video images of the cargo area captured by the first video camera are processed and a simulated video overhead view of the cargo area is generated. A still image representing an overhead view of the vehicle is displayed on the electronic display, and the generated simulated video overhead view of the cargo area is superimposed on the display over an area of the still image corresponding to the location of the cargo area.
Abstract:
A spring mount assembly has a stationary structure, a movable panel pivotally coupled to the stationary structure for movement between a closed position and an open position, a strip spring having a first mounting portion at a first end and a second mounting portion at a second end opposite the first end, and a first spring mounting structure disposed on one of the movable panel and the stationary structure, the first spring mounting structure comprising a first base for engaging the first mounting portion of the strip spring and at least one spring retention post extending from the first base to retain the first mounting portion against translational disengagement from the first base. A second spring mounting structure is disposed on the other of the movable panel and the stationary structure, the second spring mounting structure comprising a second base for engaging the second mounting portion of the strip spring.
Abstract:
Embodiments are provided of antenna mounting assemblies and vehicles that include such assemblies. In one aspect, an antenna mounting base for supporting a vehicle antenna with respect to a vehicle body panel that defines a panel aperture comprises: an antenna mounting portion; a flange extending from a surface of the antenna mounting base; and at least one tab defining a recess with the flange, the recess being sized and configured to mateably engage at least a portion of the body panel that borders the panel aperture.
Abstract:
A method of monitoring emergency vehicles includes generating host vehicle information with a navigation unit, the host vehicle information including a host vehicle location and a host vehicle heading, receiving emergency vehicle information with a receiver, the emergency vehicle information including an emergency vehicle emergency status, an emergency vehicle location and an emergency vehicle heading, determining with a controller a distance between the host vehicle location and the emergency vehicle location, determining with the controller whether the distance between host vehicle and the emergency vehicle is decreasing, and performing a mitigation operation, when the distance between host vehicle and the emergency vehicle is decreasing, and the distance between host vehicle and the emergency vehicle is a threshold distance or less.
Abstract:
A method of assisting a driver of a vehicle in driving a road, the method includes determining a location of a road boundary relative to the vehicle using a sensor, selecting, via a controller, a parameter to assist a driver of the vehicle at the location of the road boundary, updating the parameter based on a previous operation of the vehicle, determining, via the controller, whether the vehicle is approaching the road boundary based on a vehicle trajectory and the location of a road boundary, and providing a feedback operation to assist the driver in avoiding the road boundary, the feedback operation based on the selected parameter.
Abstract:
A first member of a storage tray assembly has first and second planar surfaces parallel to one another. A first cut-out extends from the first planar surface to the second planar surface. A second member has third and fourth planar surfaces parallel to one another. A second cut-out extends from the third planar surface to the fourth planar surface. The second cut-out aligns with first cut-out when the first and second members overlay and attach to one another. A third member has fifth and sixth planar surfaces parallel to one another. The third member has first shaped surfaces extending from the fifth planar surface to the sixth planar surface. The third member is inserted into the second cut-out such that the first cut-out, the second cut-out and the plurality of first shaped surfaces of the third member define a concave storage space.
Abstract:
A vehicle includes a vehicle body structure and a video camera assembly. The video camera assembly includes a base member, a video camera, a video display and an image processor. The base member is fixedly mounted to a side surface of the vehicle. The video camera is moveably supported to the base member for movement between a retracted orientation adjacent to the side surface and an extended orientation extended outward away from the side surface to capture a video image of an area outside the vehicle. The video display is supported within the vehicle such that the video display is visible within a passenger compartment of the vehicle. The image processor is operatively coupled to the video camera and the video display to process the video image captured by the video camera and to stream a video view to the video display.
Abstract:
A vehicle front suspension includes a lower suspension support structure, a transverse link, a steering knuckle and a lower knuckle breakaway structure. The transverse link has an inboard side and an outboard side, the inboard side being attached to the lower suspension support structure. The steering knuckle has an upper end, a lower end, and a wheel supporting section between the upper end and the lower end. The lower end is pivotally coupled to the outboard side of the transverse link. The lower knuckle breakaway structure is formed on the steering knuckle to release the steering knuckle from the transverse link upon application of a prescribed rearward directed force on the vehicle front suspension outboard of the lower suspension support structure.