Abstract:
An electronic power device of improved structure is fabricated with MOS technology to have a gate finger region and corresponding source regions on either sides of the gate region. This device has a first-level metal layer arranged to independently contact the gate region and source regions, and has a protective passivation layer arranged to cover the gate region. Advantageously, a wettable metal layer, deposited onto the passivation layer and the first-level metal layer, overlies said source regions. In this way, the additional wettable metal layer is made to act as a second-level metal.
Abstract:
A method is provided for manufacturing electronic non-volatile memory devices on a semiconductor substrate including a matrix of memory cells having floating gate regions formed on respective active areas and an oxide layer separating the active areas. The method may include forming sidewalls of the floating gate regions that are slanted with respect to a surface of the semiconductor substrate, forming a trench in the oxide layer following the formation of the floating gate regions, and forming a plug of polycrystalline silicon in the trench. The slanted sidewalls of the floating gate regions provide a lead-in for the formation of upper layers.
Abstract:
A regulated voltage-boosting device provides a charge-pump circuit, which has an input terminal receiving a first voltage and an output terminal supplying a second voltage higher than the first voltage. The regulated voltage-boosting device provides a plurality of voltage-boosting stages that can be selectively activated and deactivated. The regulated voltage-boosting device provides an automatic-selection circuit for activating a number of voltage-boosting stages which is correlated to the first voltage and to the second voltage.
Abstract:
A process for manufacturing a dual charge storage location electrically programmable memory cell that includes the steps of forming a central insulated gate over a semiconductor substrate; forming physically separated charge-confining layers stack portions of a dielectric-charge trapping material-dielectric layers stack at the sides of the central gate, the charge trapping material layer in each charge-confining layers stack portion forming a charge storage element; forming side control gates over each of the charge-confining layers stack portions; forming memory cell source/drain regions laterally to the side control gates; and electrically connecting the side control gates to the central gate. Each of the charge-confining layers stack portions at the sides of the central gate is formed with an nullLnull shape, with a base charge-confining layers stack portion lying on the substrate surface and an upright charge-confining layers stack portion lying against a respective side of the insulated gate.
Abstract:
A method of fabricating a MOS transistor with a controllable and modulatable conduction path through a dielectric gate oxide is disclosed, wherein the transistor structure comprises a dielectric oxide layer formed between two silicon plates, and wherein the silicon plates overhang the oxide layer all around to define an undercut having a substantially rectangular cross-sectional shape. The method comprises the steps of: chemically altering the surfaces of the silicon plates to have different functional groups provided in the undercut from those in the remainder of the surfaces; and selectively reacting the functional groups provided in the undercut with an organic molecule having a reversibly reducible center and a molecular length substantially equal to the width of the undercut, thereby to establish a covalent bond to each end of the organic molecule.
Abstract:
A voltage/current controller device, particularly for interleaving switching regulators, comprises: a DC/DC converter having a plurality of modules, with each module including a drive transistor pair connected in series between first and second supply voltage references, a current sensor connected to one transistor in the pair, and a current read circuit connected to the sensor. Advantageously, the read circuit comprises a transconductance amplifier connected across the current sensor to sense a voltage signal related to a load current being applied to each module, the transconductance amplifier reading the voltage signal with the transistor in the conducting state.
Abstract:
A semiconductor device including an electronic component and an edge region delimited by a side surface. The device is formed in a substrate of semiconductor material overlaid by a plurality of superficial layers which form, on top of the edge region, a stack of insulating layers. A first groove extends in the stack of insulating layers near the electronic component. A second groove extends in the stack of insulating layers between the first groove and the side surface and operates as an element of mechanical decoupling which blocks any possible delayering of the superficial layers during cutting of the wafer.
Abstract:
Herein described is a device for driving electric motors comprising a power stage with a variable duty-cycle coupled to a supply voltage. The power stage is suitable for driving the electric motor. The driving device comprises a circuit that is capable of raising the value of the input voltage of the power stage above the induced counter electromotive voltage of the motor in certain periods of time and a control device capable of activating said circuit in reply to values of the induced counter electromotive voltage greater than or comparable with the supply voltage.
Abstract:
The method of a protection circuit includes a reference voltage source and at least one circuit which are connected together via a switch. A memory element is connected to the input of the circuit, downstream of the switch. The switch is temporarily opened by a control signal generated by a monostable circuit when detecting switching of power elements belonging to an electronic device embedding the protection circuit. When the switch is open, the memory element supplies the circuit with the reference voltage previously stored. In this way, switching of the power element that might cause noise on the reference voltage cannot disturb the circuit and thereby cannot cause a faulty operation of the latter.
Abstract:
The gyroscope is formed by a driving system including a driving mass having an open concave shape; an accelerometer including a sensing mass and comprising mobile sensing electrodes; a linkage connecting the driving mass to the sensing mass. The sensing mass is surrounded on three sides by the driving mass and has a peripheral portion not facing the sensing mass. The mobile sensing electrodes extend integral with the sensing mass from the peripheral portion not facing the driving mass and are interleaved with fixed sensing electrodes. Thereby, there are no passing electrical connections extending below the sensing mass. Moreover the linkage includes springs placed equidistant from the center of gravity of the accelerometer, and the gyroscope is anchored to the substrate with anchoring springs placed equidistant from the center of gravity of the assembly formed by the driving system and by the accelerometer.