Abstract:
A lateral MOS device is formed in a body having a surface and is formed by a semiconductor layer of a first conductivity type; a drain region of a second conductivity type, formed in the semiconductor layer and facing the surface; a source region of the second conductivity type, formed in the semiconductor layer and facing the surface; a channel of the first conductivity type, formed in the semiconductor layer between the drain region and the source region and facing the surface; and an insulated gate region, formed on top of the surface over the channel region. In order to improve the dynamic performance, a conductive region extends only on one side of the insulated gate region, on top of the drain region but not on top of the insulated gate region.
Abstract:
A method for controlling in an open-loop voltage mode a DC motor driven through a power amplifier includes generating a control voltage for the DC motor to be input to the power amplifier based upon a difference between an external command and a correction signal, and amplifying the control voltage for generating a replica of an output of the power amplifier. A model of the DC motor is defined based upon electrical parameters of the DC motor. The method further includes estimating current flowing in the DC motor based upon the replica of the output of the power amplifier and the model of the DC motor, and generating the correction signal proportional to the estimated current.
Abstract:
A system, such as, e.g., a multiplier, for processing digital signals by using digital signals in the Canonic Signed Digit representation, the system including an input element to make the digital signals available in the Binary Canonic Signed Digit representation, a converter to convert the digital signals into Canonic Signed Digit representation for use in processing. The input element may be a memory where the signals are stored in the Binary Canonic Signed Digit representation. Alternatively, the input element is adapted to be fed with digital signals in the two's complement representation, and includes at least one converter to convert the digital signals from the two's complement representation into the Binary Canonic Signed Digit representation. This preferably occurs via the T2I transformation, which leads to generating signals in the Canonic Signed Digit representation, which are then converted to the Binary Canonic Signed Digit representation.
Abstract translation:一种系统,例如乘法器,用于通过在加农生物签名数字表示中使用数字信号来处理数字信号,该系统包括用于使二进制加拿大签名数字表示中的数字信号可用的输入元件,转换器 数字信号转换成Canonic Signed Digit表示用于处理。 输入元件可以是其中信号被存储在二进制加拿大签名数字表示中的存储器。 或者,输入元件适于以二进制补码表示中的数字信号馈送,并且包括至少一个转换器,用于将来自二进制补码表示的数字信号转换为二进制加法符号数字表示。 这优选地通过T2I变换发生,这导致在加农声有符号数字表示中产生信号,然后将其转换为二进制加法符号数字表示。
Abstract:
A process for manufacturing an SOI wafer, including the steps of: forming, in a wafer of semiconductor material, cavities delimiting structures of semiconductor material; thinning out the structures through a thermal process; and completely oxidizing the structures.
Abstract:
The method controls a charge pump generator having at least an output tank capacitor on which a regulated output voltage of the generator is produced, and a pump capacitor that is connected to a supply node and to ground during charge phases and is coupled in an anti-parallel configuration to the output tank capacitor during charge transfer phases, alternated to the charge phases. The method limits the current absorbed from the supply because the transfer capacitor is charged during at least an initial charge phase with a constant charge current of a pre-established value.
Abstract:
A sequential program-verify method is used in a non-volatile memory device including a plurality of memory cells each one for storing a logic value, the cells being arranged into a plurality of alignments. The method includes the steps of: writing a set of target values into a plurality of blocks of cells, the corresponding cells of each block belonging to a common alignment, verifying each block of cells in succession to assert a fault value for each alignment in response to a non-compliance of the value stored in the cell of the block belonging to the alignment with the corresponding target value, buffering the fault values, and in response to the verification of all the blocks of cells providing an indication of the alignments being defective according to tpe fault values.
Abstract:
The method prevents oxidation or contamination phenomena of conductive interconnection structures in semiconductor devices and includes providing a layer of semiconductor or oxide base, a conductive layer or stack on the base layer, and an antireflection coating (ARC) layer on the conductive layer or stack. The method provides a thin dielectric covering layer on the antireflection coating layer to fill or cover the microfissures existing in the antireflection coating layer.
Abstract:
A circuit for converting a direct current input voltage into an output voltage greater than the input voltage. The circuit includes a charge pump and a block for generating pulse signals of a predetermined frequency to be applied to a control input of the charge pump. The settling time, i.e. the time necessary for the output voltage to attain its operating value and to maintain it with a given precision, is reduced by providing the circuit with charge injection control via modulation of the duty cycle of the pulse signals as a function of the difference between the output voltage, or a predetermined fraction thereof, and a predetermined reference voltage and in such a manner as to reduce the settling time as the difference diminishes. The circuit includes a regulator that controls the charge pump based upon the predetermined reference voltage.
Abstract:
A method is described for fixing a lens of an optical group with respect to an optical sensor in an image acquisition device comprising the steps of housing the optical sensor in a housing, fixing a lower holder of the optical group to the housing, aligning an upper holder of the optical group, wherein the lens is placed, with the sensor so as to align a focusing point of the lens with respect to the sensor, welding the upper holder to the lower holder. The welding step may be performed by means of ultrasounds.
Abstract:
A graphic system includes a pipelined graphic engine for generating image frames for display. The pipelined graphic engine includes a geometric processing stage for performing motion extraction, and a rendering stage for generating full image frames at a first frame rate for display at a second frame rate. The second frame rate is higher than the first frame rate. A motion encoder stage receives motion information from the geometric processing stage, and produces an interpolated frame signal representative of interpolated frames. A motion compensation stage receives the interpolated frame signal from the motion encoder stage, and the full image frames from the rendering stage for generating the interpolated frames. A preferred application is in graphic systems that operate in association with smart displays through a wireless connection, such as in mobile phones.