Abstract:
A device is provided for monitoring the total current discharged from a battery. The device includes a bridge circuit of resistors in which one of the resistors has a resistance which varies according to the current which has passed through it. Whenever the battery passes a current to a load, a small portion of the current is passed through the bridge circuit.
Abstract:
A method of selectively bonding a component to a substrate prevents glue displacement onto neighboring components. The method entails shortening a section of the perimeter of a mount wall so that the foot of the mount wall contacts the glue without causing substantial displacement. A cure step hardens and holds the shortened foot of the mount wall in a stationary position, while providing a partial bond. Meanwhile the rest of the mount wall that is not located near contact pads on the substrate has a tall foot that extends to the surface of the substrate and is bonded in the usual way. By modifying the component, it is not necessary to modify either the chemistry of the epoxy or the epoxy dispense operation.
Abstract:
Sensors for air flow, temperature, pressure, and humidity are integrated onto a single semiconductor die within a miniaturized Venturi chamber to provide a microelectronic semiconductor-based environmental multi-sensor module that includes an air flow meter. One or more such multi-sensor modules can be used as building blocks in dedicated application-specific integrated circuits (ASICs) for use in environmental control appliances that rely on measurements of air flow. Furthermore, the sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. By integrating the Venturi chamber with accompanying environmental sensors, correction factors can be obtained and applied to compensate for temporal humidity fluctuations and spatial temperature variation using the Venturi apparatus.
Abstract:
Embodiments of the present invention are directed to optical packages having a cover made of transparent material with a recess formed therein and methods of forming same. The recess may be formed in a periphery portion of the transparent material and may have various shapes and configurations. Adhesive is provided in at least a portion of the recess of the transparent material, which secures the transparent material to an image sensor.
Abstract:
A lens mount is attached to a circuit board and covers electrical components on the circuit board. An electrically insulating device is positioned between the lens mount and the circuit board. The circuit board includes a grounding pad adjacent the electrically insulating device. The lens mount includes an aperture aligned with the grounding pad and the electrically insulating device. A conductive glue is dispensed into the aperture to electrically ground the lens mount to the grounding pad. The electrically insulating device seals the conductive glue from the electrical components. A method of grounding a lens mount to a circuit board is provided.
Abstract:
One or more embodiments are directed to system in package (SiP) for optical devices, including proximity sensor packaging. One embodiment is directed to an optical package that includes a stacked arrangement with a plurality of optical devices arranged over an image sensor processor die that is coupled to a first substrate. Between the two optical devices and the image sensor processor die there is provided at least a second substrate. In one embodiment, the optical package is a proximity sensor package and the optical devices include a light-emitting diode die and a light-receiving diode die. In one embodiment, the light-emitting diode die is secured to a surface of the second substrate and the light-receiving diode die is secured to a surface of a third substrate. The second and the third substrate may be secured to a surface of the image sensor processor die or to a surface of encapsulation material.
Abstract:
A wafer handling station includes a housing defining a chamber, and a wafer cassette assembly positionable in the chamber. The wafer cassette assembly includes a vertical support, and cassette members carried by the vertical support in spaced relation. Each cassette member includes a base coupled to the vertical support, wafer contact pads on an upper surface of the base and configured to support a wafer thereon, and a pair of wafer brackets carried by the base and configured to engage respective edges of the wafer to laterally confine the wafer.
Abstract:
An integrated circuit (IC) module for an IC card includes a plurality of IC card contacts in side-by-side relation. A dielectric support layer is above the contact layer and has a plurality of openings and a first coefficient of thermal expansion (CTE). An IC die is above the dielectric support layer and includes a plurality of bond pads. A bond wire extends from a respective bond pad to a corresponding contact through an adjacent opening in the dielectric support layer. A respective body of fill material is within each opening and has a second CTE. A mold compound body is above the dielectric support layer, the bodies of fill material, and surrounding the IC die. The mold compound body has a third CTE. The first CTE is closer to the second CTE than to the third CTE.
Abstract:
An image sensor device may include an interconnect layer, an image sensor IC carried by the interconnect layer and having an image sensing surface, and encapsulation material laterally surrounding the image sensor IC and covering an upper surface of the image sensor IC up to the image sensing surface. The image sensor device may include an optical plate having a peripheral lower surface carried by an upper surface of the encapsulation material and aligned with the image sensing surface, the optical plate being spaced above the image sensing surface to define an internal cavity, and a lens assembly coupled to the encapsulation material and aligned with the image sensing surface.
Abstract:
A proximity sensor includes a semiconductor die, a light emitting assembly, a redistribution layer, and an encapsulating layer. A surface of the semiconductor die includes a sensor area and contact pads. A lens is positioned over the sensor area of the semiconductor die. The light emitting assembly includes a light emitting device having a light emitting area, a lens positioned over the light emitting area, and contact pads that face the redistribution layer. A side of the redistribution layer includes contact pads. Electrical connectors place each of the contact pads of the semiconductor die in electrical communication with a respective one of the contact pads of the redistribution layer. The encapsulating layer is positioned on the redistribution layer and at least partially encapsulates the semiconductor die, the lens over the sensor area of the semiconductor die, and the light emitting assembly.