Abstract:
A bandwidth meter method and apparatus for measuring the bandwidth of a spectrum of light emitted from a laser input to the bandwidth meter is disclosed, which may comprise an optical bandwidth monitor providing a first output representative of a first parameter which is indicative of the bandwidth of the light emitted from the laser and a second output representative of a second parameter which is indicative of the bandwidth of the light emitted from the laser; and, an actual bandwidth calculation apparatus utilizing the first output and the second output as part of a multivarible equation employing predetermined calibration variables specific to the optical bandwidth monitor, to calculate an actual bandwidth parameter. The apparatus and method may be implemented in a laser lithography light source and/or in an integrated circuit lithography tool.
Abstract:
An apparatus and method for differential spectral interferometry comprising providing an interferometer comprising a light source; employing an element to provide a dithered relative phase shift between target and reference arms of the interferometer, detecting output from the interferometer, demodulating signals received from the detector at different multiples of the dither frequencies, generating more than one real-valued interferograms from demodulated signals, and using the real-valued interferograms to obtain the complex spectral interferogram.
Abstract:
A system of using an interferometer, in combination with a laser, and a detector to determine absorptive characteristics of a material under test. The operation of the interferometer allows for determination of the wavelength of the laser beam and for determining relative changes in the wavelength of the laser beam. A method for using a laser source and an interferometer to determine characteristics of a material under test in accordance with the present invention is also provided.
Abstract:
The invention relates to an infrared measuring device, especially for the spectrometry of aqueous systems. Said device comprises at least one measuring unit, especially a measuring cell, also comprising at least one ATR-body and at least one infrared light source. The measuring unit contains at least one ATR-body which comprises at least two planar, substantially parallel limiting surfaces and which is transparent with respect to measuring radiation and which has an index of refraction which is greater than that of the medium which is arranged next to at least one limiting surface and which is to be examined, especially larger or equal to 1.5. The IR-measuring radiation on at least one of the planar, parallel limiting surfaces of the ATR-body can be totally reflected in an attenuated manner by at least six times.
Abstract:
Remote sensing of the temperature of a greybody or blackbody radiator is effected by passing its radiation (24) through a modulated infrared filter spectrometer. The infrared filter comprises, in sequence, a band pass filter (20), a first polariser (21) which polarises the radiation, an electro-optical element (22) which splits the polarised radiation into two orthogonally polarised components, and a second polariser (23). A lens (28) images the radiation leaving the second polariser onto a detector (27). The electrical signal from the detector (27) is input to a numerical analyser. The electro-optical element (22), typically comprising a birefringent crystal assembly (25) and a birefringent trim plate (26), is configured so that the net optical delay of the orthogonally polarised components passed through it is such that the recombined components are at or near a peak or trough in their interferogram. A sinusoidally varying voltage is applied to the electro-optical element to modulate the net delay of the components passed through the electro-optical element. The numerical analyser is programmed to compute the harmonic amplitude ratio (the ratio of signal amplitudes at the fundamental and second harmonic of the frequency of the modulating voltage) of the signal that it receives from the detector (27). The harmonic amplitude ratio is a function of the temperature of the radiator, which can be estimated by reference to a calibration look-up table.
Abstract:
A method and apparatus for measuring bandwidth of light emitted from a laser which may comprise: first and second wavelength sensitive optical bandwidth detectors providing, respectively, an output representative of a first parameter indicative of the bandwidth of the emitted light as measured respectively by the first and second bandwidth detectors, and an actual bandwidth calculation apparatus adapted to utilize these two outputs as part of a multivariable linear equation employing predetermined calibration variables specific to either the first or the second bandwidth detector, to calculate a first actual bandwidth parameter or a second actual bandwidth parameter. The first actual bandwidth parameter may be a spectrum full width at some percent of the maximum (“FWXM”), and the second actual bandwidth parameter may be a portion containing some percentage of the energy (“EX”). The first and second bandwidth detectors may an etalon and the outputs may be representative of a fringe width of a fringe of an optical output of the respective etalon at FWXM. The precomputed calibration variables may be derived from respective three dimensional plots representing, respectively, detector outputs in relation to a calibrating input light with known values of the first and second actual bandwidth parameters.
Abstract:
An instrument including a scannable mirror employs multimode optical fibers and an optical coupler. Modal dispersion, e.g., from the multimode optical fiber, is reduced by a method employing deconvolution. The scannable mirror may employ a mirror movable in an optical waveguide or an optical fiber wound on an expandable core.
Abstract:
A vertical cavity surface-emitting laser (VCSEL) package useful in interferometry. The present invention comprises methods and apparatuses that allow use of multimode VCSELS, and that provide for wavelength control and stability. The present invention contemplates the use of a defined response element, such as an etalon, in combination with control of the operating environment of the VCSEL to monitor and control the output wavelength of the VCSEL.
Abstract:
An apparatus and method for controlling a laser system is disclosed which may comprise a spectrometer adapted to measure an unknown bandwidth of a spectrum of light emitted from the laser, which may comprise an optical bandwidth measuring unit adapted to provide as an output a measured parameter, which is indicative of a parameter of the unknown bandwidth of the spectrum being measured; a reported parameter computing unit adapted to compute a reported parameter of the unknown bandwidth of the spectrum being measured according to the formula: Reported Parameter (nullRPnull)nullA*(Measured Parameter (nullMPnull))nullC, wherein the RP and MP are a different type of parameter and the values of A and C are determined based upon calibration of the optical bandwidth measuring unit MP response for light of known valued of RP. The optical bandwidth measuring unit may comprise an interferometric or dispersive optical instrument, such as an etalon. RP may be, e.g., at FWXM and MP may be, e.g., FWXnullM, wherein XnullXnull. RP may be, e.g., at EX % and MP may be, e.g., at FWXM.
Abstract translation:公开了一种用于控制激光系统的装置和方法,其可以包括适于测量从激光器发射的光谱的未知带宽的光谱仪,其可以包括光带宽测量单元,其适于提供测量参数作为输出, 其表示正被测量的频谱的未知带宽的参数; 报告参数计算单元,用于根据以下公式计算被测量的未知带宽的报告参数:报告参数(“RP”)= A *(测量参数(“MP”))+ C,其中RP 并且MP是不同类型的参数,并且基于对已知值RP的光的光学带宽测量单元MP响应的校准来确定A和C的值。 光学带宽测量单元可以包括诸如标准具的干涉式或分散光学仪器。 RP可以是例如FWXM,MP可以是例如FWX'M,其中X
Abstract:
An instrument including a scannable mirror employs multimode optical fibers and an optical coupler. Modal dispersion, e.g., from the multimode optical fiber, is reduced by a method employing deconvolution. The scannable mirror may employ a mirror movable in an optical waveguide or an optical fiber wound on an expandable core.