Abstract:
In a method for manufacturing a semiconductor device, a substrate is provided. A dummy gate is formed on the substrate. A first dielectric layer is formed to peripherally enclose the dummy gate over the substrate. A second dielectric layer is formed to peripherally enclose the first dielectric layer over the substrate. The second dielectric layer and the first dielectric layer are formed from different materials. An implant operation is performed on the first dielectric layer to form a first doped portion in the first dielectric layer. The dummy gate is removed to form a hole in the first dielectric layer. An operation of removing the dummy gate includes removing a portion of the first doped portion to form the hole having a bottom radial opening area and a top radial opening area which is greater than the bottom radial opening area. A metal gate is formed in the hole.
Abstract:
A semiconductor device includes a semiconductor substrate and at least one gate stack. The gate stack is present on the semiconductor substrate, and the gate stack includes at least one work function conductor and a filling conductor. The work function conductor has a recess therein. The filling conductor includes a plug portion and a cap portion. The plug portion is present in the recess of the work function conductor. The cap portion caps the work function conductor.
Abstract:
Semiconductor devices, FinFET devices and methods of forming the same are disclosed. In accordance with some embodiments, a semiconductor device includes a substrate, a first gate stack, a first dielectric layer, a shielding layer and a connector. The first gate stack is over a substrate. The first dielectric layer is aside the first gate stack, wherein the top surface of the first gate stack is lower than the top surface of the first dielectric layer such that a first recess is provided above the first gate stack. The shielding layer is on the surface of the first recess and extends onto the top surface of the first dielectric layer. The connector is through the shielding layer and is electrically connected to the first gate stack.
Abstract:
Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a fin structure over a semiconductor substrate. The semiconductor device structure also includes a gate stack covering a portion of the fin structure. The gate stack includes a first portion and a second portion adjacent to the fin structure, and the first portion is wider than the second portion.
Abstract:
An interconnection and a method for manufacturing thereof are provided. The interconnection includes a first conductive layer, a dielectric layer, a second conductive layer, an insulation layer, and a plurality of air gaps. The first conductive layer is disposed over a semiconductor substrate. The dielectric layer is disposed over the first conductive layer. The second conductive layer penetrates through the dielectric layer to electrically connect with the first conductive layer. The insulation layer is located between a portion of the dielectric layer and the second conductive layer, and a material of the insulation layer and a material of the dielectric layer are different. The air gaps are located between another portion of the dielectric layer and the second conductive layer.
Abstract:
An interconnection includes first and second conductive layers, first and second dielectric layers, a stop layer, and first and second adhesion layers is provided. The first conductive layer is disposed over a semiconductor substrate. The first dielectric layer is over the first conductive layer, and the first dielectric layer includes a via hole. The second dielectric layer is disposed over the first dielectric layer. The stop layer is located between the first dielectric layer and the second dielectric layer, and the second dielectric layer and the stop layer include a trench. The second conductive layer is located in the via hole and the trench to electrically connect with the first conductive layer. The first adhesion layer is located on sidewalls of the trench. The second adhesion layer is located between the second conductive layer and the first adhesion layer and between the second conductive layer and the first dielectric layer.
Abstract:
Provided is a FinFET device including a substrate having at least one fin, first and second gate stacks, first and second strained layers, first and second dielectric layers, and first and second connectors. The first and second gate stacks are across the fin. The first and second strained layers are respectively aside the first and second gate stacks. The first and second dielectric layer are respectively over the first and second strained layers, and the top surface of the first dielectric layer is lower than the top surface of the second dielectric layer. The first connector is through the first dielectric layer and is electrically connected to the first strained layer. The second connector is through the second dielectric layer and is electrically connected to the second strained layer. Besides, the width of the second connector is greater than the width of the first connector.
Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a first metal layer formed over a substrate and an interconnect structure formed over the first metal layer. The interconnect structure includes an upper portion, a middle portion and a lower portion, the middle portion is connected between the upper portion and the lower portion. The upper portion and the lower portion each have a constant width, and the middle portion has a tapered width which is gradually tapered from the upper portion to the lower portion.
Abstract:
A fin-type field effect transistor device including a substrate, a gate stack structure, spacers and source and drain regions is described. The spacers includes first and second spacers and a first height of the first spacer is larger than a second height of the second spacer. A dielectric layer disposed on the gate stack structure includes a contact opening exposing the source and drain regions, the first and second spacers and a portion of the gate stack structure. A sheath structure is disposed within the contact opening and the sheath structure is in contact with the first and second spacers and the exposed portion of the gate stack structure without covering the source and drain regions. A metal connector is disposed within the sheath structure and connected to the source and drain regions.
Abstract:
A semiconductor device includes a semiconductor device and a semiconductor fin on the semiconductor substrate, in which the semiconductor fin has a fin isolation structure at a common boundary that is shared by the two cells. The fin isolation structure has an air gap extending from a top of the semiconductor fin to a portion of the semiconductor substrate. The air gap divides the semiconductor fin into two portions of the semiconductor fin. The fin isolation structure includes a dielectric cap layer capping a top of the air gap.