Abstract:
A supply source for delivery of a CO-containing dopant gas composition is provided. The composition includes a controlled amount of a diluent gas mixture such as xenon and hydrogen, which are each provided at controlled volumetric ratios to ensure optimal carbon ion implantation performance. The composition can be packaged as a dopant gas kit consisting of a CO-containing supply source and a diluent mixture supply source. Alternatively, the composition can be pre-mixed and introduced from a single source that can be actuated in response to a sub-atmospheric condition achieved along the discharge flow path to allow a controlled flow of the dopant mixture from the interior volume of the device into an ion source apparatus.
Abstract:
The invention relates to an insulated chamber comprising at least one element that may operate at sub-ambient temperature, the space around the element(s) being filled with solid insulation and means for injecting a gas containing at least 95 mol-% nitrogen into the insulation, at least some of the gas-injection means opening at a position vertically above at least one element to insulate.
Abstract:
A compressed natural gas fueling system includes a frame arrangement with at least one tank disposed therein and an inlet that can receive a compressed natural gas fueling nozzle to fill the at least one tank. The fueling system can be attached with and supported by frame rails behind a cabin of a vehicle such that the inlet is positioned above the frame rails.
Abstract:
A catalytic tank heater includes a catalytic heating element supported on an LPG tank by a support structure that holds the element in a position facing the tank. Vapor from the tank is provided as fuel to the heating element, and is regulated to increase heat output as tank pressure drops. The heating element is internally separated into a pilot heater and a main heater, with respective separate fuel inlets. The pilot heater remains in continual operation, but the main heater is operated only while tank pressure is below a threshold. Operation of the pilot heater keeps a portion of the catalyst hot, so that, when tank pressure drops below the threshold, and fuel is supplied to the main heater, catalytic combustion quickly expands from the area surrounding the pilot heater to the remainder of the catalyst.
Abstract:
A pressurizable gas reservoir can include a first end member and a second end member that is disposed in longitudinally-spaced relation to the first end member. A flexible reservoir member can extend between opposing first and second ends. The first end secured to the first end member and the second end secured to the second end member. The flexible reservoir member at least partially defines a reservoir chamber between the first and second end members that is capable of storing a quantity of pressurized gas for an extended duration of time. The first and second end members can be maintained in substantially-fixed axial position relative to one another. A suspension system including such a pressurized gas reservoir and a method of assembly are also included.
Abstract:
A method and system is disclosed for delivering a cryogenically stored fuel in a gaseous state into the air intake system of a gaseous fuelled internal combustion engine. The method comprises determining the flow rate capacity in the engine system's fuel delivery line, comparing the determined flow rate capacity to a required flow rate demand and supplying fuel in gaseous state directly from the vapor space of the cryogenic storage vessel to the fuel delivery line that supplies fuel to the engine, when the flow rate capacity is equal to or higher than the required flow rate demand. The method further comprises activating a cryogenic pump to deliver fuel to the internal combustion engine from the liquid space of the cryogenic storage vessel when the determined flow rate capacity is lower than the required flow rate demand.
Abstract:
Systems and methods for installing a compressed natural gas housing apparatus to a vehicle are disclosed. The housing apparatus is configured to be retrofitted to existing cab liners used on refuse vehicles. The complete installation of the housing apparatus and roof liner are disposed below the roofline of the refuse vehicle. The housing apparatus can be configured to contain a variable number of compressed natural gas tanks. The housing apparatus is installed such that the length of the gas pipeline and electrical wiring connected to the apparatus from the vehicle engine and controller is minimized. The location of housing apparatus provides the additional safety of minimizing the exposure of the gas tanks to falling debris or prevent possible contact with the compressed natural gas tanks being damaged as vehicle travels under bridges, other low objects, or contact in the event of a rollover accident.
Abstract:
Disclosed herein is a semi-submersible offshore structure having storage tanks for liquefied gas, which is constructed so as to improve workability in marine offloading of the liquefied gas stored in the storage tanks while reducing an influence of sloshing. The offshore structure is anchored at sea and has liquefied gas. The offshore structure includes a storage tank storing liquefied gas, a plurality of columns partially submerged under the sea level and each having the storage tank therein, and an upper deck located on the plurality of columns to connect the columns to each other.
Abstract:
A natural gas supply station according to the present invention includes an installation structure on which an LNG tank container is installed and a gas vaporizer that receives a liquefied natural gas from the LNG tank container to vaporize the liquefied natural gas. Here, the installation structure includes a moving part reciprocatively moving in a direction in which the LNG tank container is unloaded from a transport unit, and the moving part is separably fixed to the LNG tank container to move the LNG tank container loaded on the transport unit to the installation structure or the LNG tank container loaded on the installation structure to the transport unit.
Abstract:
A fluid dispensing system may include a first tank configured to contain a first fluid and a second tank configured to contain a second fluid. The system may also include a conditioning system fluidly connected to the second tank. The conditioning system may include at least one conduit fluidly coupled to a lower region of the second tank. The conditioning system may also include a heat exchanger. In addition, the conditioning system may include at least one conduit fluidly coupled to an upper region of the second tank.