Abstract:
A color luminance meter 1 is provided with a polychrometer 4 as a spectral optical system including a light receiving sensor array 43, a signal processing circuit 5 and an operation control unit 6. The operation control unit 6 carries out calculations to obtain characteristics of a measurement light based on a specified spectral responsitivity, using light reception signals and specified weighting coefficients. The spectral responsitivities of light receiving sensors constructing the light receiving sensor array 43 are selected such that B≧5 nm and A/B lies within a range of 1.5 to 4.0 when A, B denote the half power band width of the spectral responsitivities and a center wavelength interval of the spectral responsitivities. Accordingly, there can be provided a light measuring apparatus capable of maximally suppressing errors to highly precisely measure color luminance values and the like even in a measurement of a light lying in a narrow band such as a monochromatic light.
Abstract:
An apparatus for generating a Raman signal of a test sample is disclosed. The apparatus includes a first optical path, a second optical path, a first station, and a second station. The first optical path is adapted for coupling with a radiation source that produces a test beam at the first optical path. The first station is responsive to the test beam and is adapted to house a test standard. The second station is responsive to the test beam and is adapted to house the test sample. In response to the test beam, Raman radiation from the test standard and the test sample are combined and directed to the second optical path, which is adapted for coupling with a spectrometer and a detector for producing a Raman spectrum of the test sample.
Abstract:
Miniaturized spectrometer in the form of a probe for determining ingredients of a gaseous or liquid fluid with a light source and a spectrometer, at least one measurement beam, and at least one reference beam. Light from the light source is optionally fanned out and focused, by at least one optical lens, in an essentially parallel beam. At least one measurement beam is passed through a light transparent window from the probe into the fluid being investigated and through an additional light transparent window back in to the probe, and at least one reference beam is guided in the probe interior. A collecting optics device, comprising at least one lens, diverts the beams to the impingement point of the light guide or the inlet of the spectrometer, and a beam selector in the area of the collecting optics device passes through one of the partial beams and interrupts all the others.
Abstract:
The present invention presents a high-speed electromechanical shutter which has at least two rotary beam choppers that are synchronized using a phase-locked loop electronic control to reduce the duty cycle. These choppers have blade means that can comprise discs or drums, each having about 60 (+/−15) slots which are from about 0.3 to about 0.8 mm wide and about 5 to about 20 mm long (radially) which are evenly distributed through out 360°, and a third rotary chopper which is optically aligned has a small number of slots, such as for example, 1 to 10 slots which are about 1 to about 2 mm wide and about 5 to about 20 mm long (radially). Further the blade means include phase slots that allow the blade means to be phase locked using a closed loop control circuit. In addition, in a preferred embodiment, the system also has a leaf shutter. Thus the invention preferably achieves a gate width of less than about 100 microseconds, using motors that operate at 3000 to 10,000 rpm, and with a phase jitter of less than about 1.5 microseconds, and further using an aperture with more than about 75% optical transmission with a clear aperture of about 0.8 mm×10 mm. The system can be synchronized to external sources at 0 6 kHz lasers, data acquisition systems, and cameras.
Abstract:
Illuminators and systems that permit the production of a beam of electromagnetic radiation having selected peak wavelength, bandwidth, intensity, pulse frequency and pulse duration for a variety of analytical and therapeutic applications. Multiple beam illuminators use filter elements arranged into filter arrays, having characteristic wavelength absorption properties. By providing a series of filter arrays formed into tracks having defined wavelength offsets, radiation passing through a portion of a track can be modified to include selected peak wavelength and bandwidth. Selection of peak wavelength(s) and bandwidth can be accomplished using mechanical interrupters, mechanical shutters, or electro-optical devices including liquid crystal device. Multiple output beams permit the coordinated illumination of a target, and sensors provide feedback regarding the effects of illumination on a target. Computer storage devices, programs, and controllers can provide easy selection of the characteristics of the output beams. Output beams can have a variety of different shapes and configuration.
Abstract:
An ellipsometer, and a method of ellipsometry, for analyzing a sample using a broad range of wavelengths, includes a light source for generating a beam of polychromatic light having a range of wavelengths of light for interacting with the sample. A polarizer polarizes the light beam before the light beam interacts with the sample. A rotating compensator induces phase retardations of a polarization state of the light beam wherein the range of wavelengths and the compensator are selected such that at least a first phase retardation value is induced that is within a primary range of effective retardations of substantially 135° to 225°, and at least a second phase retardation value is induced that is outside of the primary range. An analyzer interacts with the light beam after the light beam interacts with the sample. A detector measures the intensity of light after interacting with the analyzer as a function of compensator angle and of wavelength, preferably at all wavelengths simultaneously. A processor determines the polarization state of the beam as it impinges the analyzer from the light intensities measured by the detector.
Abstract:
A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.
Abstract:
The present invention is a dispersive, diffraction grating, NIR spectrometer that automatically calibrates the wavelength scale of the instrument without the need for external wavelength calibration materials. The invention results from the novel combination of: 1) a low power He—Ne laser at right angles to the source beam of the spectrometer; 2) a folding mirror to redirect the collimated laser beam so that it is parallel to the source beam; 3) the tendency of diffraction gratings to produce overlapping spectra of higher orders; 4) a “polka dot” beam splitter to redirect the majority of the laser beam toward the reference detector; 5) PbS detectors and 6) a software routine written in Lab VIEW that automatically corrects the wavelength scale of the instrument from the positions of the 632.8 nm laser line in the spectrum.
Abstract:
Spectroscopy apparatus for spectrochemical analysis of a sample having an excitation source (60) for providing spectral light (62) of the sample for analysis. The spectral light (62) is analysed via an optical system (66-66-68) that includes a polychromator (70, 74-80) and solid state multielement array detector (82). The elements (i.e. pixels) of the detector (82) are serially read by means (84) to provide light intensity measurements as a function of wavelength. A problem is that the elements (pixels) of the detector (82) continue to accumulate charge during the serial read-out. This is avoided by providing an optical shutter (72) for blocking the spectral light (62) whilst elements (pixels) of the detector (82) are being serially read. Shutter (72) has a piezoelectric actuator which is preferably a bimorph mounted as a cantilever. It is preferably located adjacent to the entrance aperture (70) of the polychromator. Bimorph structures for the actuator and drive and protective circuit arrangements are also disclosed.
Abstract:
The invention concerns a miniaturized spectrometer, especially in the form of a probe, for determination of the ingredients of a gaseous or liquid fluid with a light source (3) and a spectrometer (2), at least one measurement beam and at least one reference beam. The invention is characterized by the fact that the light of the light source (3) is optionally fanned out and bundled by means of at least one optical lens (8) to an essentially parallel beam, that at least one measurement beam is passed through a light transparent window from the probe into the fluid being investigated and through an additional light transparent window back into the probe, that at least one reference beam is guided in the probe interior, that a collecting optics (14), consisting of at least one lens, diverts the beams to the impingement point of the light guide (5) or the inlet of the spectrometer (2), and that a beam selector (7) is provided in the region of the collecting optics (14) that passes through one of the partial beams and interrupts all the others.