Abstract:
Optical fibers are provided for modal discrimination which include a central core and a cladding disposed about the central core. The central core has a non-circular and non-elliptical cross-section, and it is rotated about a central axis of the optical fiber along the length of the optical fiber at a selected pitch resulting in the capability of a fundamental mode beam output for large core sizes. An optical system includes a seed optical source configured to provide a seed beam and an optical amplifier configured to receive and amplify the seed beam. The optical amplifier also includes an active optical fiber having a large mode area non-circular and non-elliptical core rotated about a central axis of said active optical fiber to provide modal discrimination and fundamental mode output.
Abstract:
An adhesive void mitigating fiber ferrule optical connector includes a housing for an optical fiber, the housing including opposite front and rear openings and an elongate bore providing an interior surface and extending between the opposite front and rear openings for insertably receiving the optical fiber from the rear opening through the front opening, the housing also including a front adhesive fill-port in communication with the elongate bore nearer the front opening for providing adhesive substantially void-free in the elongate bore and for surroundably securing the optical fiber extending therein to the interior surface.
Abstract:
A fiber monitoring system for detecting the occurrence of a thermal event, especially of a traumatic nature, in optical fibers while transmitting laser beams includes one or more fiber monitoring apparatuses each having a thermal sensing array supported by a holder board of a laminated dielectric material having a row of clips for retaining optical fibers in alignment with thermal sensor devices of the thermal sensing arrays. The thermal sensing arrays also have electrical circuitry elements for electrically interconnecting the thermal sensing devices in series and enabling electrically connecting the thermal sensing arrays with other circuitry to form a thermal interlock circuit for a laser system.
Abstract:
A semiconductor laser that includes a single mode semiconductor laser coupled to a flared power amplifier is provided, the device including an internal or an external optical element that reinforces the curved wave front of the flared section of the device through phase-matching. By reinforcing the curved wave front via phase-matching, the device is less susceptible to thermal and gain-index coupled perturbations, even at high output powers, resulting in higher beam quality. Exemplary phase-matching optical elements include a grating integrated into the flared amplifier section; an intra-cavity, externally positioned binary optical element; and an intra-cavity, externally positioned cylindrically curved optical element.
Abstract:
Method and apparatus are provided that limit the current ramp rate applied to a laser bar or a single emitter laser diode to a predetermined value of 150 milliamps per millisecond or less. In addition to the laser diode and its power supply, the apparatus includes a power supply control circuit that performs the function of limiting the power supply ramp rate. The power supply control circuit can be separate from, or integrated within, the power supply.
Abstract:
An end-pumped solid state laser utilizing a laser diode stack of laser diode subassemblies as the pump source is provided. The laser gain medium of the solid state laser is contained within a laser cavity defined by a pair of reflective elements. Each laser diode subassembly includes a submount to which one or more laser diodes are attached. The fast axis corresponding to each output beam of each laser diode is substantially perpendicular to the mounting surfaces of the submount. The laser diodes can be of one wavelength or multiple wavelengths. Preferably the submount has a high thermal conductivity and a CTE that is matched to that of the laser diode. On top of the submount, adjacent to the laser diode, is a spacer. The laser diode stack is formed by mechanically coupling the bottom surface of each submount to the spacer of an adjacent submount assembly. Preferably the laser diode stack is thermally coupled to a cooling block.
Abstract:
An extremely versatile diode laser assembly is provided, the assembly comprised of a plurality of diode laser subassemblies mounted to a stepped cooling block. The stepped cooling block allows the fabrication of a close packed and compact assembly in which individual diode laser subassembly output beams do not interfere with one another.
Abstract:
A single piece optic for coupling the output of a diode laser array into an optical fiber array is provided. The coupling optic has a planar back surface which, during use with a diode laser array, is positioned substantially parallel to the front face of the laser array. The coupling optic is fabricated from a single substrate and is comprised of a plurality of optical elements. Depending upon the technique used to fabricate the optical elements, the individual optical elements may be trapezoidally-shaped or rectangularly-shaped. The front surface of each optical element is tilted, thus preventing reflected laser radiation from resonating within the diode laser's emitters. Preferably the wedge angle for the tilted front surface is greater than 2 mrad, thus accomplishing the goal of limiting feedback into the emitters, and less than 4 mrad, thus reducing beam steering. Additionally each optical element is shaped to reduce the divergence of the emitters in the fast axis, thus allowing the output from each emitter to be effectively coupled into the corresponding optical fiber.
Abstract:
A means of achieving a spatially uniform output beam from a laser diode array with minimal design complexity is provided. The means is comprised of one or more optical elements located adjacent to the output of the diode array, the optical element(s) reducing the divergence of the output of the individual emitters of the diode array in at least one axis to within an acceptable range, preferably within the range of 0.1 to 10 degrees. The means is further comprised of a diffusing element, the output of the emitters passing through the optical element(s) prior to passing through the diffusing element. The diffusing element, preferably either a holographic diffuser or an engineered diffuser™ which provides control over the light diffusion angles, smoothes out the ripples formed by the overlapping output beams of the emitters in order to achieve the desired spatially uniform beam.