Abstract:
The invention discloses cellulase enzymes with optimized properties for processing of cellulose- and lignocellulose-containing substrates. In particular, cellobiohydrolase enzymes with preferred characteristics are disclosed. The present invention provides fusion, insertion, deletion and/or substitution variants of such enzymes. Enzyme variants have enhanced thermostability, proteolytic stability, specific activity and/or stability at extreme pH. Nucleic acid molecules encoding said enzymes, a composition comprising said enzymes, a method for preparation, and the use for cellulose processing and/or for the production of biofuels are disclosed.
Abstract:
The invention is directed to a liquefied sugar beet and/or sugar cane biomass material as well as production methods and uses thereof. The liquefied biomass is storage stable and can be used for the production of a product resulting from fermentation.
Abstract:
The invention concerns a method for the enzymatic treatment of raw polymeric feedstock comprising the following steps: (a) preferably separation of soluble components from the raw polymeric feedstock, (b) treating the raw polymeric feedstock with an enzyme system in order to liberate defined soluble monomeric or oligomeric building blocks from the insoluble raw polymeric feedstock; and (c) separating the defined monomeric or oligomeric building blocks produced in step b) from the remainder of the raw polymeric feedstock. Preferably, the enzyme system used in step b) contains not more than 50%, preferably not more than 20%, more preferably not more than 10%, more preferably not more than 5%, more preferably not more than 2%, more preferably not more than 1% of other enzyme activities apart from the enzyme activity resulting in liberation of said defined monomeric or oligomeric building blocks from the raw polymeric feedstock according to step b). Further aspects of the invention concern the use of “less pure” and thus less costly enzyme systems in subsequent enzymatic treatment steps and methods for determining the optimum sequence of enzymatic treatment steps by analysis of the raw polymeric feedstock used.
Abstract:
The present invention relates to enzymes and processes. In particular, there is described an isolated polypeptide comprising the amino acid sequence corresponding to Citrobacter freundii phytase or a homologue, a modified form, a functional equivalent or an effective fragment thereof. There is also described a host cell transformed or transfected with a nucleic acid encoding a bacterial phytase enzyme or a modified form as well as the use of such a phytase or modified form in food or animal feed.
Abstract:
The present invention relates to polypeptides having xylanase activity and nucleic acid sequences encoding such polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acid constructs as well as methods for producing and using the polypeptides. One specific application of the xylanase is the selective hydrolysis of pentose sugar components of hemicellulose-containing plant biomass. The nucleotide sequence may be used for the production of the xylanase or optimized mutants thereof.
Abstract:
The present invention relates to enzymes and processes. In particular, there is described a host 3140 cell transformed or transfected with a nucleic acid encoding a bacterial phytase enzyme and variants thereof.
Abstract:
The present invention relates to enzymes and processes. In particular, there is described a host cell transformed or transfected with a nucleic acid encoding a bacterial phytase enzyme and variants thereof.
Abstract:
The invention relates to a method for depolymerizing materials containing carbohydrates comprising the following steps: (a) treating a material containing carbohydrates with an inorganic catalyst in order to release defined monomeric or oligomeric building blocks from the material containing the carbohydrates; and (b) separating the defined monomeric or oligomeric building blocks produced in step (a) from the rest of the carbohydrate-containing material. Preferably, the inorganic catalyst used in step (a) comprises tectosilicates, phyilosilicates or hydrotalcites and more preferably zeolites or bentonites. The carbohydrate-containing material further comprises preferably LCB and the defined monomeric or oligomeric building blocks are preferably glucoses, xyloses, arabinoses and oligomers thereof. Other aspects of the invention refer to the use of solution promoters in combination with the inorganic catalyst.
Abstract:
A process for generating sequence-specific proteases by screening-based directed evolution is disclosed. The use of the process provides proteases recognizing and cleaving user-definable amino-acid sequences with high sequence-specificity. Proteases obtainable by the process can be used in a variety of medical, diagnostic and industrial applications.