Abstract:
An implantable fluid management device, designed to drain excess fluid from a variety of locations in a living host into a second location within the host, such as the bladder of that host. The device may be used to treat ascites, chronic pericardial effusions, normopressure hydrocephalus, hydrocephalus, pulmonary edema, or any fluid collection within the body of a human, or a non-human mammal.
Abstract:
A device and methods for treating renal failure are disclosed. One embodiment of the device is an implantable peritoneal dialysis device. When in use, the device can have a semi-permeable reservoir implanted in the peritoneal cavity. The reservoir can receive blood waste and drain through one or more conduits, via a pump, to the biological bladder. Solids and/or a solution benefiting dialysis can be pumped to the reservoir and/or implanted in the peritoneal cavity.
Abstract:
Foley type catheter embodiments for sensing physiologic data from a urinary tract of a patient are disclosed. The system includes the catheter and a data processing apparatus and methods for sensing physiologic data from the urinary tract. Embodiments may also include a pressure sensor having a pressure interface at a distal end of the catheter, a pressure transducer at a proximal end, and a fluid column disposed between the pressure interface and transducer. When the distal end is residing in the bladder, the pressure transducer can transduce pressure impinging on it into a chronological pressure profile, which can be processed by the data processing apparatus into one or more distinct physiologic pressure profiles, for example, peritoneal pressure, respiratory rate, and cardiac rate. At a sufficiently high data-sampling rate, these physiologic data may further include relative pulmonary tidal volume, cardiac output, relative cardiac output, and absolute cardiac stroke volume.
Abstract:
In certain variations, systems and/or methods for electromagnetic induction therapy are provided. One or more ergonomic or body contoured applicators may be included. The applicators include one or more conductive coils configured to generate an electromagnetic or magnetic field focused on a target nerve, muscle or other body tissues positioned in proximity to the coil. One or more sensors may be utilized to detect stimulation and to provide feedback about the efficacy of the applied electromagnetic induction therapy. A controller may be adjustable to vary a current through a coil to adjust the magnetic field focused upon the target nerve, muscle or other body tissues based on the feedback provide by a sensor or by a patient. In certain systems or methods, pulsed magnetic fields may be intermittently applied to a target nerve, muscle or tissue without causing habituation.
Abstract:
A device and methods for treating renal failure are disclosed. One embodiment of the device is an implantable peritoneal dialysis device. When in use, the device can have a semi-permeable reservoir implanted in the peritoneal cavity. The reservoir can receive blood waste and drain through one or more conduits, via a pump, to the biological bladder. Solids and/or a solution benefiting dialysis can be pumped to the reservoir and/or implanted in the peritoneal cavity.
Abstract:
An implantable fluid management device, designed to drain excess fluid from a variety of locations in a living host into a second location within the host, such as the bladder of that host. The device may be used to treat ascites, chronic pericardial effusions, normopressure hydrocephalus, hydrocephalus, pulmonary edema, or any fluid collection within the body of a human, or a non-human mammal.
Abstract:
A method for determining the quantity of an analyte in a fluid is described along with various components of an apparatus designed to carry out the method. The method involves habituating a patient's eye to one or more colors, measuring the recovery time, and correlating the recovery time to the quantity of the analyte. A reproducible, objective, non-attentiveness-dependant test for assessing analyte levels is further disclosed. To this end, a device that measures saccadic eye movements may be used to assess the return of vision to the prehabituated state. The method and apparatus are particularly suited for noninvasively measuring blood glucose levels.
Abstract:
A method for determining the quantity of an analyte in a fluid is described along with various components of an apparatus designed to carry out the method. The method involves habituating a patient's eye to one or more colors, measuring the recovery time, and correlating the recovery time to the quantity of the analyte. A reproducible, objective, non-attentiveness-dependant test for assessing analyte levels is further disclosed. To this end, a device that measures saccadic eye movements may be used to assess the return of vision to the prehabituated state. The method and apparatus are particularly suited for noninvasively measuring blood glucose levels.
Abstract:
A device for removing fluid from a first bodily cavity and for directing that fluid into a second bodily cavity while avoiding risks of infection and, in one embodiment, excessive dehydration of the first bodily cavity. The device includes an uptake tube having a proximal end in fluid communication with the first bodily cavity and a distal end in fluid communication with a pump, and an outflow tube having a proximal end in fluid communication with the pump and a distal end in fluid communication with the second bodily cavity. The distal end of the uptake tube may be coupled to a reservoir configured to expand upon ingression of fluid into the reservoir and to contract upon removal of fluid due to a negative pressure provided by the pump.
Abstract:
The present invention involves a device and method capable of providing minimally invasive insertion of implants with saline, aqueous or other fluid fillers while preventing deflation and/or migration, as well as monitoring for leakage from, or leakage into, implants (such as breast implants, pacemakers, implantable cardioverter defibrillators, other inflatable devices and other related devices). The device described herein has the ability to be inserted minimally invasively and to sense and communicate the occurrence of loss of integrity in the shell of virtually any implant.