Abstract:
A switched-capacitor digital-to-analog converter circuit is disclosed. The switched-capacitor digital-to-analog converter circuit includes crossing switches for each capacitor branch, the crossing switches are used to eliminate cross interference between digital-to-analog converter blocks sharing the same reference voltages.
Abstract:
Provided is a high speed bit stream data conversion circuit that includes input ports to receive first bit streams at a first bit rate. Data conversion circuits receive the first bit streams and produce second bit stream(s), wherein the number and bit rate of the first and second bit stream(s) differ. Symmetrical pathways transport the first bit streams from the input ports to the data conversion circuits, wherein their transmission time(s) are substantially equal. A clock distribution circuit receives and symmetrically distributes a clock signal to data conversion circuits. A central trunk coupled to the clock port and located between a first pair of circuit pathways with paired branches that extend from the trunk and that couple to the data conversion circuits make up the clock distribution circuit. The distributed data clock signal latches data in data conversion circuits from the first to the second bit stream(s).
Abstract:
Provided is a high speed bit stream data conversion circuit that includes input ports to receive first bit streams at a first bit rate. Data conversion circuits receive the first bit streams and produce second bit stream(s), wherein the number and bit rate of the first and second bit stream(s) differ. Symmetrical pathways transport the first bit streams from the input ports to the data conversion circuits, wherein their transmission time(s) are substantially equal. A clock distribution circuit receives and symmetrically distributes a clock signal to data conversion circuits. A central trunk coupled to the clock port and located between a first pair of circuit pathways with paired branches that extend from the trunk and that couple to the data conversion circuits make up the clock distribution circuit. The distributed data clock signal latches data in data conversion circuits from the first to the second bit stream(s).
Abstract:
Provided is a high speed bit stream data conversion circuit that includes input ports to receive first bit streams at a first bit rate. Data conversion circuits receive the first bit streams and produce second bit stream(s), wherein the number and bit rate of the first and second bit stream(s) differ. Symmetrical pathways transport the first bit streams from the input ports to the data conversion circuits, wherein their transmission time(s) are substantially equal. A clock distribution circuit receives and symmetrically distributes a clock signal to data conversion circuits. A central trunk coupled to the clock port and located between a first pair of circuit pathways with paired branches that extend from the trunk and that couple to the data conversion circuits make up the clock distribution circuit. The distributed data clock signal latches data in data conversion circuits from the first to the second bit stream(s).
Abstract:
A multiple bit stream interface interfaces a first transmit data multiplexing integrated circuit and a second transmit data multiplexing integrated circuit. The multiple bit stream interface includes an interface plurality of transmit bit streams each of which carries a respective bit stream at an interface bit rate. The interface further includes a transmit data clock operating at a frequency corresponding to one-half of the interface bit rate. The first transmit data multiplexing integrated circuit receives a first plurality of transmit bit streams from a communication ASIC at a first bit rate. The second transmit data multiplexing integrated circuit produces a single bit stream output at a line bit rate. The interface plurality of transmit bit streams is divided into a first group and a second group, wherein the first group is carried on first group of lines and the second group is carried on a second group of lines. The transmit data clock is carried on a line that is centered with respect to the first group of lines and the second group of lines such that it resides between the first group of lines and the second group of lines. The interface may also interface a first receive data demultiplexing integrated circuit and a second receive data demultiplexing integrated circuit.
Abstract:
Aspects of the pattern-independent phase adjustment system includes a single output data XOR gate coupled to a differential input data signal and a bias voltage through a first variable resistor. A single output reference XOR gate may be coupled to a latched differential input signal and the bias voltage through a second variable resistor. At least one latch may be coupled to at least one differential input of the data and reference XOR gate. The single output of the data XOR gate may be a data output of a clock and data recovery circuit (CDR) and the single output of the reference XOR gate may be a reference output of the clock and CDR. No current may flow at the data output of the data XOR gate and the reference output of the reference XOR gate when there are no transitions occurring at an input of the phase detector.
Abstract:
A multiple bit stream interface interfaces a first transmit data multiplexing integrated circuit and a second transmit data multiplexing integrated circuit. The multiple bit stream interface includes an interface plurality of transmit bit streams each of which carries a respective bit stream at an interface bit rate and in a natural order. The interface further includes a transmit data clock operating at a frequency corresponding to one-half of the interface bit rate. The first transmit data multiplexing integrated circuit receives a first plurality of transmit bit streams from a communication ASIC at a first bit rate. The second transmit data multiplexing integrated circuit produces a single bit stream output at a line bit rate. The interface plurality of transmit bit streams is divided into a first group and a second group, wherein the first group is carried on first group of lines and the second group is carried on a second group of lines. The transmit data clock is carried on a line that is centered with respect to the first group of lines and the second group of lines such that it resides between the first group of lines and the second group of lines. The interface may also interface a first receive data demultiplexing integrated circuit and a second receive data demultiplexing integrated circuit.
Abstract:
An input processing circuit includes a first and second input transistors for receiving a differential pair of first and second input signals, respectively. At least one resistor is coupled between first terminals of the first and second input transistors. The input processing circuit includes a variable gain amplifier (VGA) circuit. At least one first transistor has a gate terminal, and is coupled between the first terminals of the first and second input transistors. At least one second transistor has a gate terminal, and is coupled between the first terminals of the first and second input transistors. A gate switch is coupled to the gate terminal of the at least one second transistor. The at least one first transistor and the at least one second transistor adjust a gain of the input processing circuit in response to a control voltage. The control voltage is applied to the gate terminal of the at least one first transistor, and the control voltage is applied to the gate terminal of the at least one second transistor through the gate switch.
Abstract:
Aspects of the invention provide a fast one level zero-current-state XOR gate. An embodiment of the invention provides a first pair of differentially configured transistors and a level shifting resistor coupled to the first pair of differentially configured transistors. The one level zero-current-state XOR gate may also include a second pair of differentially configured transistors. A core of the XOR gate may be coupled to outputs of the first and the second pairs of differentially configured transistors.
Abstract:
The present invention provides a method for tuning output drivers to an operating frequency based on settings used to tune other devices within the device such as a VCO. First the VCO within a PLL and clock circuit is tuned to the desired operating frequency. This operating frequency then corresponds to a discrete tuning setting. The discrete setting that causes the VCO to function at the operating frequency are then transferred to scaled amplifiers within output drivers. These drivers are then tuned to the operating frequency with these settings. This process eliminates the need to individually tune each output driver to function properly at the operating frequency.