Abstract:
A composition for a wear-resistant and low-friction coating is presented. The coating composition includes a hard ceramic phase, a metallic binder phase and a lubricant phase. The lubricant phase includes a multi-component oxide. An article having a wear-resistant and low-friction coating and a method of making such a coating are also described.
Abstract:
A coating composition is described, having a first coating layer which includes a metallic matrix in which metal carbide particles are dispersed; and a hard, dense second coating layer disposed over the first coating layer. The second coating layer is formed from a metal nitride-type material, and has an average roughness of less than about 80 micro-inches (Ra). Related articles and processes are also disclosed.
Abstract:
A bearing assembly mounted in an x-ray tube includes a bearing race and a bearing ball positioned adjacent to the bearing race. A lubricant is deposited on a first portion of a bare metal of one of the bearing race and the bearing ball, and a metal matrix deposited on a second portion of the bare metal.
Abstract:
Erosion resistant coating processes and material improvements for line-of-sight applications. The erosion resistant coating composition includes nanostructured grains of tungsten carbide (WC) and/or submicron sized grains of WC embedded into a cobalt chromium (CoCr) binder matrix. A high velocity air fuel thermal spray process (HVAF) is used to create thick coatings in excess of about 500 microns with high percentages of primary carbide for longer life better erosion resistant coatings. These materials and processes are especially suited for hydroelectric turbine components.
Abstract:
A composition comprises ferromagnetic particles having a magnetite coating. In one embodiment, a method comprises coating ferromagnetic particles with magnetite; and compacting the particles to a desired shape. In yet another embodiment, an article is manufactured from a composition comprising ferromagnetic particles having a magnetite coating. In yet another embodiment, an article is manufactured from a method comprising coating ferromagnetic particles with magnetite; and compacting the particles to a desired shape.
Abstract:
A coated ferromagnetic particle comprises a ferromagnetic core and a coating. The coating comprises a residue resulting from a thermal treatment of a coating material comprising a polymer selected from the group consisting of polyorganosiloxanes, polyorganosilanes, and mixtures thereof. A composite magnetic article comprises a compacted and annealed article of a desired shape. The composite magnetic article comprises a plurality of coated ferromagnetic articles. Each coated ferromagnetic particle comprises a ferromagnetic core and a coating. The coating comprises a residue resulting from a thermal treatment of a coating material comprising a polymer selected from the group consisting of polyorganosiloxanes, polyorganosilanes, and mixtures thereof.
Abstract:
A method for use in determining the thickness of a layer of interest in a multi-layer structure. A first electrode is positioned in contact with a first surface of the multi-layer structure, and a second electrode is positioned in contact with a second surface of the multi-layer structure. The second surface is substantially opposite the first surface. The first electrode is pressed against the multi-layer structure at a predetermined sampling pressure, and the structure is optionally adjusted to a predetermined sampling temperature. The electrical impedance between the first electrode and the second electrode is measured.
Abstract:
Erosion resistant coating processes and material improvements for line-of-sight applications. The erosion resistant coating composition includes nanostructured grains of tungsten carbide (WC) and/or submicron sized grains of WC embedded into a cobalt chromium (CoCr) binder matrix. A high velocity air fuel thermal spray process (HVAF) is used to create thick coatings in excess of about 500 microns with high percentages of primary carbide for longer life better erosion resistant coatings. These materials and processes are especially suited for hydroelectric turbine components.
Abstract:
A metallic structure having a graded microstructure is provided. The metallic structure comprises a graded region comprising a plurality of grains having a gradient in grain size varying as a function of position between a first median grain size at an outer region and a second median grain size at an inner region and a plurality of dispersoids dispersed within the microstructure. The first median grain size is different from the second median grain size. A method of forming a metallic structure having a graded microstructure is also provided. The method comprises: providing a metallic structure comprising at least one reactive species; diffusing at least one reactant at a controlled rate from an outer region of the metallic structure towards an inner region of the metallic structure to form a gradient in reactant activity; reacting the reactant with the reactive species to form a plurality of dispersoids; and heat treating the metallic structure to achieve grain growth so as to form a graded microstructure.
Abstract:
An erosion resistant protective structure for a turbine engine component comprises a shape memory alloy. The shape memory alloy includes nickel-titanium based alloys, indium-titanium based alloys, nickel-aluminum based alloys, nickel-gallium based alloys, copper based alloys, gold-cadmium based alloys, iron-platinum based alloys, iron-palladium based alloys, silver-cadmium based alloys, indium-cadmium based alloys, manganese-copper based alloys, ruthenium-niobium based alloys, ruthenium-tantalum based alloys, titanium based alloys, iron-based alloys, or combinations comprising at least one of the foregoing alloys. Also, disclosed herein are methods for forming the shape memory alloy onto turbine component.