Abstract:
A semiconductor device is disclosed, including a substrate, a fin type semiconductor layer disposed on the substrate, a gate dielectric layer disposed on a top and sidewalls of the fin type semiconductor layer, a metal nitride layer disposed on the gate dielectric layer, and an aluminum doped metal nitride layer disposed on the metal nitride layer. In an embodiment of the invention, the metal nitride layer is a titanium nitride layer and the aluminum doped metal nitride layer is an aluminum doped titanium nitride layer.
Abstract:
A method for forming a semiconductor structure is provided. The method includes providing a substrate; forming a dielectric layer on the substrate; forming a conductor pattern on a main surface of the dielectric layer, the conductor pattern having a top surface and sidewalls; and performing a selective atomic layer deposition (ALD) process to selectively deposit a conformal metal layer onto the top surface and sidewalls of the conductor pattern, but without depositing onto the main surface of the dielectric layer substantially.
Abstract:
A method for fabricating a semiconductor device is provided. The method for fabricating the semiconductor device comprises providing a substrate. Under an atmosphere containing a fluoride nitride compound, a plasma treatment process is performed to simultaneously fluorinate and nitrify a surface of the substrate. Thereafter, a dielectric layer is formed on the substrate.
Abstract:
A method of forming conductive pattern is provided. A seeding layer is formed on an underlayer. By using an energy ray, an irradiation treatment is performed on a portion of a surface of the seeding layer. The seeding layer thus includes a plurality of irradiated regions and a plurality of unirradiated regions. A conversion treatment is performed on the irradiated regions of the seeding layer. A selective growth process is performed, so as to form a conductive pattern on each unirradiated region of the seeding layer. The irradiated regions of the seeding layer are removed, so that the conductive patterns are insulated from each other.
Abstract:
A method for fabricating a gate dielectric layer comprises the steps of: forming a dielectric layer on a semiconductor substrate; performing a nitrogen treating process to form a nitride layer on the dielectric layer; and performing a thermal treating process at 1150-1400° C. for a period of 400-800 milliseconds, to form a gate dielectric layer. A step of forming a gate layer on the gate dielectric layer may be performed to form a gate structure.
Abstract:
An integrated circuit structure including a copper-aluminum interconnect with a CuSiN layer and a method for fabricating the same are provided. The method for fabricating an integrated circuit structure including a copper-aluminum interconnect according to the present invention comprises the steps of providing a copper (Cu) layer; forming a barrier layer including a CuSiN layer on the copper layer; forming a wetting layer on the barrier layer; and forming an aluminum (Al) layer on the wetting layer.
Abstract:
A method for fabricating a semiconductor a semiconductor device having a stacked-gate structure. A polysilicon layer is formed overlying a substrate, which is insulated from the substrate by a dielectric layer. A metal-flash layer is formed overlying the polysilicon layer, and then a tungsten nitride layer is formed overlying the titanium layer. The tungsten nitride layer is annealed using nitrogen and hydrogen gases. A tungsten layer and a cap layer are successively formed overlying the tungsten nitride layer.